search into Ancient Strata (British Library Lending Division, Yorks, England, transl. 1974); Plant Microfossils of the Proterozoic and Lower Paleozoic of the U.S.S.R. (Nauka, Leningrad, 1974)

- . W. Schopf et al., Precambrian Research, 269 (1977). 10.
- B. Bloeser, J. W. Schopf, R. J. Horodyski, W. J. Breed, *Science* 195, 676 (1977). 12 Precambrian shale-facies microbiotas from
- Precambrian shale-facies microbiotas from North America have been described from the Windermere Supergroup [G. Licari and P. E. Cloud, Geol. Soc. Am. Program 1968 Annu. Meet. (1968), p. 174; M. Moorman, J. Paleontol. 48, 524 (1974); P. E. Cloud, M. Moorman, D. Pierce, Q. Rev. Biol. 50, 131 (1975); B. J. Javor and E. W. Mountjoy, Geology 4, 111 (1976); H. J. Hofmann, Geol. Surv. Canada Bull. 189 (1971); W. C. Gussov, J. Paleontol. 47, 1108 (1973)], the Chuar Group [C. D. Walcott, Geol. Soc. Am. Bull. 10, 199 (1899); T. D. Ford and W. J. Breed, Palaeontology 16, 535 (1973); Breed, Palaeontology 16, 535 (1973); ______ Downie, in Geology and Natural History of C. Downe, in Geology and Natural History of Grand Canyon Region, Guidebook to the Fifth Field Conference, D. L. Baars, Ed. (Four Cor-ners Geological Society, Flagstaff, 1969), p. 114; (11)]; the Tindir Group [C. W. Allison and M. A. Moorman, Geology 1, 65 (1973)], and the Uinta Mountain Group [H. J. Hofmann, Precambrian Research 4, 1 (1977)].
- 13. Radiometric dates and correlation for the Belt Supergroup are reviewed by J. E. Geol. Soc. Am. Bull. 83, 1215 (1972) Harrison.
- This area has been recently mapped by W. T. Keefer, U.S. Geol. Surv. Misc. Geol. Invest. Map I-726 (1972). 14
- Shale samples were dissolved in hydrofluoric acid followed by centrifuging and washing the organic residue with distilled water. The dark transverse lines shown in Figs. 1, B, C,
- 16. and F, are folds in the filament. Separation of the filaments into at least four spe-
- 17. Separation of the influences from spectra to a spectra set of the influence of the influence of the spectra set of the spectra logic affinity are of very rare occurrence in the Newland shales. Preferential preservation of sheaths as compared to trichomes in the oscillatoriacean cyanophyte Lyngbya aestuarii is illus-

trated by R. J. Horodyski, B. Bloeser, S. Von-der Haar, J. Sediment. Petrol. 47, 680 (1977). A detailed taxonomic treatment of the Newland microfossils and of similar microfossils occurring in the underlying Chamberlain Shale is in reparation (R. J. Horodyski and B. Bloeser, in

- preparation.) J. W. Schopf, D. Z. Oehler, Science **193**, 47 (1976); P. Cloud, Geol. Soc. S. Afr. Alex. L. Du Toit Memorial Lecture Series **14**, 32p (1976). 18
- The possibility exists that the inner sheath of a colonial coccoid cyanophyte may have been to-19. colonial coccoid cyanophyte may have been to-tally degraded leaving solely the outer sheath preserved. See S. M. Awramik, S. Golubic, E. S. Barghoorn, Geol. Soc. Am. Abstracts with Programs 4, 438 (1972); R. J. Horodyski and S. P. Vonder Haar, J. Sediment. Petrol. 45, 894 (1975); S. Golubic and H. J. Hofmann, J. Pa-leontol. 50, 1074 (1976).
- A. R. Loeblich, Proc. North Am. Paleontologi cal Convention (1969). p. 705: Tayon 32, 27 20. Convention (1969), p. 705; Taxon 23, 277 1974
- 21. Bedding surfaces of the Newland Shales contain carbonaceous films similar to those described and interpreted as megascopic and probably eu karyotic algae from the 1300-million-year-old Greyson Shale, Belt Supergroup, by M. R. Wal-ter, J. H. Oehler, D. Z. Oehler, (5). Such algae, if eukaryotic, could have been the source of the sphaeromorphs scopic films in the Newland shales is in prog
- Studying shale-facies microfossils in petro 22. graphic thin sections supplements the study of microfossils in acid maceration residues as it oreserves the spatial relationship of the micro-ossils, avoids breakage of fragile specimens. fossils, avoids and indicates whether organic microstructures are indigenous to the rock and syngenetic with deposition of the enclosing sedimentary matrix. In addition, it provides a relatively rapid means of identifying fossiliferous horizons. Interest ingly, the microfossils are evident only in pet ographic thin sections oriented parallel to bed ding; in sections oriented perpendicular to bed-ding; the microfossils are not readily recogniz-able as biologic entities due to compression. We thank J. W. Schopf and H. T. Loeblich for
- 23.

17 June 1977; revised 19 October 1977

Autoradiographic Image Intensification: Applications in **Medical Radiography**

Abstract. The image of an 80 to 90 percent underexposed medical radiograph can be increased to readable density and contrast by autoradiographic image intensification. The technique consists of combining the image silver of the radiograph with a radioactive compound, thiourea labeled with sulfur-35, and then making an autoradiograph from the activated negative.

Minimizing the x-ray dose received by patients during medical examinations and maximizing the quality of the radiographs are subjects of current concern to both the medical profession and the public (1). Some conflict is inherent in the two objectives because higher-quality radiographs-that is, those which convey more information to the physician-usually require higher exposure levels. Recent gains in quality or exposure reduction, or both, are due to developments such as computer processing, electrostatic imaging systems, improvements in intensifying screens, and scatter rejection techniques (2). The experiments reported here indicate that additional exposure reductions or quality increases possible with postdevelopment are

autoradiographic image intensification.

Radiographs which are normally classified as "badly underexposed" actually contain most of the information which was intended to be recorded by the original exposure. Autoradiographic intensification effectively retrieves this information by increasing the image density and contrast to readable levels. The intensification occurs on an autoradiograph made from the underexposed film after the original image silver has been chemically combined with a radioactive isotope (3). While the theory of autoradiographic intensification has been known for many years (4), the possibility of its widespread application has recently been realized through the development at the Marshall Space Flight Center

0036-8075/78/0210-0684\$00.50/0 Copyright © 1978 AAAS

of a simple, efficient radiochemical technique employing thiourea labeled with sulfur-35 (5). Although the procedure was developed for use in astronomical research, some of the most valuable applications may be in the field of medical radiography (6). These include reduction of the x-ray dose, since underexposed radiographs can be intensified after development; elimination of retakes necessitated by accidental underexposure; and maximum use of exposures with a high detective quantum efficiency (DQE), such as those made with scatter rejection devices, which can cause underexposures (2, 7).

With the cooperation of scientists from Vanderbilt University Hospital, we determined the range of underexposures which can be adequately intensified by autoradiography. We found that, in general, radiographs underexposed by as much as 80 to 90 percent produce autoradiographs which compare favorably with optimum exposures. Some of the radiographs used for this research were inadvertently underexposed in routine clinical situations, and others were deliberately underexposed.

The underexposure limit for a commonly used film-screen system, DuPont Lo-Dose (single-coated film), was determined from experiments with radiographs of the abdominal area of an anatomical phantom. An optimum-exposure radiograph was made at 120 kV and 450 mA-sec. Underexposures were made (with no change in tube voltage or subject distance) at 100, 50, and 20 mA-sec (that is, underexposures of 78, 89, and 96 percent). Autoradiographs of the underexposed film were made and compared with the normal-exposure radiograph. The contrast and visible detail on the autoradiographs made from the 78 and 89 percent underexposures were about the same as on the normal radiograph. Figure 1 shows optimum paper prints (8) of the normal exposure radiograph, the 89 percent underexposure radiograph, and the autoradiograph of the 89 percent underexposure. The limiting case was the 96 percent underexposure; there was absolutely no visible image on the radiograph, and while the autoradiograph produced an image, it was of unacceptably poor quality. An example of accidental underexposure with the same film-screen system is shown in Fig. 2, where an underexposed mammogram may be compared with the corresponding autoradiograph. All autoradiographs were made on Kodak industrial films with exposure times of 2 to 12 hours (9).

The method of radioactivating radio-

SCIENCE, VOL. 199, 10 FEBRUARY 1978

684

Fig. 1. Optimum prints of (a) a normally exposed radiograph, (b) an 89 percent underexposed radiograph, and (c) an autoradiograph made from the underexposed radiograph.

graphs requires special attention because of the physical nature of the films (relatively heavy emulsion, often doublecoated). Successful intensification requires an efficient reaction between the photographic silver and the [35S]thiourea (to form radioactive silver sulfide), and this is accomplished by smoothly agitating the film while it is immersed in the radioactive solution. We have found only one completely successful agitation method for radiographs (10). The film is placed inside a processing drum normally used for developing color prints, the radioactive solution is added, and the drum is continuously rotated. Commercially available devices sold with the drums accomplish this agitation automatically and efficiently. Only one side of the film is activated, and the autoradiograph reproduces only the activated image. Significant intensification can be achieved with the image from just one side of a double-coated film, but the total gain is a factor of 2 less than that obtained with a single-coated film. When deliberate underexposures are made, single-coated film is usually chosen; but even with double-coated film, autoradiographic intensification can be useful for avoiding retakes. We have found that it does not matter which side of the doublecoated film is used for autoradiographs.

Autoradiographic intensification, as a postdevelopment process, can be employed sequentially with other dose-reduction methods such as the use of intensifying screens as in the experiments reported here. The quality of radiographs can be improved through the se-10 FEBRUARY 1978

Fig. 2. Optimum prints of (a) an accidentally underexposed mammogram and (b) an autoradiograph made from the underexposed film.

quential use of postdevelopment intensification with high-DQE exposures such as those made with the scatter rejection techniques of Barnes *et al.* (7). Radiographic quality can also be improved when the exposure time is reduced because the possibility of patient motion and subsequent image blurring is reduced. In many cases, the sharpness of the image will also be increased since a smaller focal spot results from the lower tube current.

In summary, an autoradiographic intensification technique which can be used on a routine basis has been developed, and its possible use with medical radiographs is reported here. Good autoradiographic images can be obtained even when the original radiograph has been underexposed by 80 to 90 percent. Possible applications for medical radiography include optimum use of high-DQE techniques, reduction of x-ray dose, and rescue of accidentally underexposed radiographs.

BARBARA S. ASKINS Space Sciences Laboratory, Marshall Space Flight Center, Alabama 35812

References and Notes

- 3
- K. Rossman, Curr. Probl. Radiol. 2, 1 (1972). R. Wagner, Photogr. Sci. Eng. 21, 252 (1977). It is possible to radioactivate the silver directly by neutron bombardment, but this method has limited practical application.

- Immed practical application.
 J. DeMent, U.S. patent 2,603,775 (1952); M. Thackray, British patent 1,394,664 (1975).
 B. Askins, Appl. Opt. 15, 2860 (1976).
 G. Rao and B. Askins, Med. Imaging, in press;
 A. Brill, G. Rao, G. Novak, R. Price, A. James, J. Trussell, D. Janney, B. Askins, in preparation. tion
- G. Barnes, H. Cleare, I. Brezovich, *Radiology* **120**, 691 (1976). 7.
- We made the best possible print from each film. However, the appearance of the prints differs from that of the films in two cases: (i) the image 8. of the underexposed radiograph is enhanced by printing on high-contrast paper; and (ii) the background fog of the autoradiograph is higher

than that of the optimum exposure, and this

- does not show on the print.
 9. Industrial x-ray film was used only because it was readily available in the laboratory. The speed of the various types of Kodak x-ray film decreases in the order AA, M, and R; the time required to make an autoradiograph increases about a factor of 2 as the speed of the receiver film decreases
- The agitation problem does not preclude auto-10. mation of the process because a similar tech-nique can be incorporated in the processing machine. Also, we have not tried gaseous burst agitation
- 11. I thank G. Rao and A. Brill of Vanderbilt University Hospital for supplying the films and par-ticipating in the evaluation; R. Wagner, G. Barnes, E. Kerkes, and R. O'Dell for dis-cussions and help; and D. Speich for the photography

11 November 1977

Fasting Decreases Triiodothyronine Receptor Capacity

Abstract. Fasting decreases the ratio of hepatic nuclear to serum triiodothyronine (T_3) by diminishing the binding capacity of nuclear T_3 receptors. In combination with the lower serum T_3 concentration caused by fasting, the decrease in receptor content results in a marked decrease in nuclear T_3 -receptor complexes. The changes in T_3 receptor content and circulating T_3 in fasted animals appear to be independent synergistic adaptations for caloric conservation in the fasted state. Unlike changes in hormonal level, the modification of nuclear receptor content provides a mechanism that may protect cells with a low caloric reserve independently of the metabolic status of the whole animal.

Fasting decreases the serum concentration of 3,5,3'-triiodothyronine (T₃), concomitantly increasing the concentration of 3,3'5'-triiodothyronine (reverse T_3 (1). The latter has little or no calorigenic activity (2). The reduction in serum T_3 is probably a mechanism for caloric conservation in the fasted state. However it is the T₃-receptor complex rather than T₃ itself that is required for a hormonal effect, and a decreased concentration of serum T_3 does not necessarily imply fewer T₃-receptor complexes. The number of such complexes is determined both by the concentration of T_3 available for binding and the number and association constants of T₃ receptors. Several hormones diminish the concentrations of their own receptors (down regulation), thus tending to neutralize the biological effects of sustained changes in their concentration (3). This may also be true of T₃. Down regulation of the pituitary nuclear T_3 receptor by exposure to T_3 has recently been reported (4). Of several putative T_3 receptors (and sites of action), the nuclear receptor is the best characterized and thus far is the only receptor for which a clear correlation between occupancy and biological action has been established (5-7). The purpose of the present study was to determine whether fasting affects the nuclear T_3 receptor. We report that fasting decreases the ratio of hepatic nuclear T_3 to serum T_3 by decreasing the nuclear content of T_3 receptors.

Female Sprague-Dawley rats weighing between 150 and 250 g were used. Rats of similar weight were paired and placed in individual cages with free access to water. Food was withheld from one of the pair. For studies of nuclear T₃ uptake in vivo, $[^{125}I]T_3$ in dilute rat serum was injected into the femoral artery. This procedure and subsequent exsanguina-

Table 1. Effects of a 5-day fast on the nuclear/serum ¹²⁵I ratio after injection of [¹²⁵I]triiodothyronine.

Measure	N	Control rats	Fasted rats	P^{\dagger}
Weight change (g)	6	$+21.7 \pm 6.6^*$	-75.8 ± 17.1	<.001
Serum T_2 (ng/dl)	5	48.2 ± 10.0	24.4 ± 13.7	<.025
Liver weight (g)	6	9.8 ± 1.3	5.5 ± 0.9	<.01
Liver DNA (mg/g)	6	0.97 ± 0.10	2.0 ± 0.28	<.001
Nuclear/serum ¹²⁵ l				
(cpm/µg DNA)/(cpm/µl serum)	6	0.94 ± 0.11	0.65 ± 0.18	<.005

*Mean \pm S.D. †Paired t-test.

686

0036-8075/78/0210-0686\$00.50/0 Copyright © 1978 AAAS

tion through the abdominal aorta were carried out under light ether anesthesia. The rats were exsanguinated 30 minutes after injection. This is sufficient time for T_3 to equilibrate with rat nuclei (8). The livers were removed and chilled on ice. All subsequent procedures were carried out at 0° to 4°C. A weighed portion of liver, dissected free of fibrous tissue, was homogenized in ten volumes of 0.25M sucrose in 20 mM tris buffer, pH 7.85, containing 1 mM MgCl₂. The homogenate was centrifuged for 10 minutes at 600g and the pellet resuspended by gentle homogenization with 0.5 percent Triton X-100 in the sucrose solution. The Triton treatment was repeated once more and the final pellet was washed and resuspended in sucrose. Portions of the nuclear suspension were taken to determine radioactivity as well as DNA (9). The portion taken for determination of radioactive content was counted in an automatic well-type gamma scintillation counter without further preparation. For determination of DNA, a separate portion of the nuclei was washed three times in tris buffer to remove sucrose. The DNA was measured by the method of Ceriotti (10). The solubilized T_3 receptor was extracted from nuclei by the method of Samuels *et al.* (11). Total serum T_3 was determined by solid phase immunoassay (12) of unprecipitated serum. Serum portions were precipitated with 10 percent trichloroacetic acid before separate $[^{125}I]T_3$ from counting to [¹²⁵I]iodide.

Triiodothyronine binding studies were carried out in vitro by incubating the nuclear extract with tracer quantities of [¹²⁵I]T₃ and separating bound from free T_3 with dextran-coated charcoal (13). The charcoal was prepared by mixing 300 mg of Norit-A and 30 mg of dextran-15 in 100 ml of 0.4M KCl in sucrose buffer, pH 7.85. A 0.5-ml portion of extract containing $[125I]T_3$ was added to 1 ml of dextran-charcoal in an ice bath, vortexed, and allowed to stand for 15 minutes. The charcoal was separated by centrifugation and the decanted supernatant and charcoal were counted in a gamma scintillation counter to determine bound and free [125I]T₃.

Rats fasted for 5 days remained active and appeared to be in good condition. The results of the experiments in vivo are summarized in Table 1. With fasting, serum T₃ concentrations decreased on the average by about 50 percent. Liver weights decreased with a relative conservation of DNA so that the DNA/liver weight ratio increased proportionately. The ratio of hepatic nuclear to serum

SCIENCE, VOL. 199, 10 FEBRUARY 1978