
the absence of coexisting hypercholes- 
terolemia or hypertension. 

This possibility is further strengthened 
by evidence for the role of neuropsy- 
chological mechanisms in human is- 
chemic heart disease (30). Such mecha- 
nisms would of necessity be mediated 
through the nervous system. Whether 
they would act directly by affecting the 
vascular wall through neural transmis- 
sion or indirectly by elaborating arteri- 
opathic substances (such as angiotensin 
II) in extravascular sites, can only be an- 
swered by future investigation. 
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It is well documented that barbiturates 
have a remarkably selective action on 
synaptic transmission, and it is generally 
agreed that alterations in synaptic func- 
tion play a crucial role in producing gen- 
eral anesthesia. However, the exact site 
at which these drugs act remains con- 
troversial. On the one hand there is evi- 
dence that barbiturates have presynaptic 
effects which could lead to the blockade 
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of transmitter release (1, 2), while on the 
other hand there is considerable evi- 
dence that barbiturates act postsyn- 
aptically to block excitatory transmit- 
ter action (3-7). Moreover, the preser- 
vation or augmentation of synaptic in- 
hibition in the presence of barbiturates 
both in the vertebrate central nervous 
system (8) and invertebrate systems (9) 
suggests that a block of inhibitory trans- 
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mitter release is not occurring. This dif- 
ferential action of barbiturates also in- 
dicates a striking selectivity of barbitu- 
rates for certain types of synapses. The 
sympathetic ganglion is a particularly 
useful preparation to examine the selec- 
tivity of barbiturate action, since a va- 
riety of synaptic potentials can be re- 
corded (10, 11). In addition, insight can 
be gained into the relative importance of 
pre- and postsynaptic sites of action. 

Changes in membrane potential of frog 
(Rana catesbeiana) paravertebral sym- 
pathetic neurons were recorded by the 
sucrose gap technique from the ninth or 
tenth postganglionic branch (12). Initial 
studies confirmed that transmission 
through the frog sympathetic ganglion 
was much more sensitive to barbiturates 
than was axonal conduction (13). Thus a 
50 percent block of synaptic transmis- 
sion occurred at a concentration of 100 
AuM pentobarbital, while a 50 percent 
block of axonal conduction required ap- 
proximately a 20-fold increase in concen- 
tration. Examination of the relative sen- 
sitivity of the various synaptic potentials 
indicated an additional highly selective 
action. Figure IA shows that pentobarbi- 
tal severely depresses the fast excitatory 
postsynaptic potential (EPSP) but has 
no effect on the slow inhibitory post- 
synaptic potential (IPSP) or slow EPSP. 
A 50 percent reduction in the fast EPSP 
occurred at a concentration of 100 ,uM 
(N = 8). To reduce the slow potentials 
to a similar extent required increasing 
the concentration approximately tenfold. 
This differential sensitivity, although less 
pronounced, was seen with a number of 
other general anesthetics including keta- 
mine, chloral hydrate, chloralase, ether, 
and halothane. The convulsant barbitu- 
rate 5-(2-cyclohexylideneethyl)-5-ethyl 
barbituric acid also had a selective ac- 
tion. These results complement other re- 
search on the effect of anesthetics on 
ganglionic discharges (14). 

A comparison of the action of pento- 
barbital was also made on the depolari- 
zation produced by y-aminobutyric acid 
(GABA), which in mammalian ganglia 
results from an increase in chloride con- 
ductance (15); 38-alanine, which weakly 
mimics GABA in sympathetic ganglia 
(16); and carbachol. Whereas pentobar- 
bital (100 ,iM) reduced the amplitude of 
the carbachol response an average of 80 
percent (N = 6), the amplitude of the 
GABA and /3-alanine responses was ac- 
tually increased and prolonged (Fig. lB). 
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Pentobarbital: Differential Postsynaptic Actions on 

Sympathetic Ganglion Cells 

Abstract. The frog sympathetic ganglion has been used as a model to elucidate the 
cellular mechanism of barbiturate anesthesia. Anesthetic concentrations of pento- 
barbital markedly reduced the fast nicotinic excitatory postsynaptic potential while 
having no effect on the slow excitatory postsynaptic potential or slow inhibitory post- 
synaptic potential, even though all three synaptic potentials depend on the pre- 
synaptic release of acetylcholine. A similar differential effect was seen for nicotinic 
and muscarinic responses to exogenously applied agonists, while the depolarizing 
action of y-aminobutyric acid (GABA) was enhanced. These results indicate that 
pentobarbital has remarkably selective actions on the sympathetic ganglion and fur- 
ther indicate that blockade of ganglionic transmission by anesthetic concentrations 
of pentobarbital can be entirely explained by a postsynaptic action. The present re- 
sults strengthen the concept that pentobarbital anesthesia results from a postsyn- 
aptic blockade of central excitatory synapses which increase sodium conductance 
coupled with a postsynaptic enhancement of GABA-mediated synaptic inhibition. 
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Fig. 1. Differential postsynaptic effects of pentobarbital on frog sympathetic ganglion. (A) In- 
creasing concentrations of pentobarbital markedly depress the fast EPSP (f-EPSP) but have no 
effect on the slow EPSP (s-EPSP) or slow IPSP (s-IPSP), which were elicited by a stimulus 
frequency of 60 hertz. (B) Brief applications of carbachol (C), GABA (G), and /3-alanine (P3) 
depolarize the ganglion. Pentobarbital (100 /M) blocks the carbachol response but augments 
the GABA and /3-alanine responses. Carbachol (20 /M) was applied for 15 seconds, GABA (40 
IaM) for iO seconds, and /3-alanine (120 /M) for 30 seconds. The voltage calibration in (B) is the 
same as in (A). 

pentobarbital (17). This same concentra- 
tion of pentobarbital had little effect on 
the muscarinic depolarization of gangli- 
on cells by methacholine. 

These results show that of a variety of 
ganglionic responses only the fast nico- 
tinic EPSP is depressed by anesthetic 
concentrations of pentobarbital. The fast 
EPSP is generated by an increase in so- 
dium and potassium conductance (11). 
Although the eiectrogenic mechanisms 
of the slow potentials are not yet clearly 
established, it is at least evident that they 
are not based on an increase in mem- 
brane conductance (10, 11, 18). The fact 
that excitatory responses to other neuro- 
transmitters, such as glutamate, which 
also increase sodium conductance, are 
blocked by barbiturates (4, 6, 7) suggests 
that the ionic channel opened by these 
excitatory transmitters is uniquely sensi- 
tive to barbiturates and other general 
anesthetics (5, 6). 

Since anesthetic concentrations of 
pentobarbital have no effect on the slow 
IPSP and slow EPSP, which are both de- 
pendent on the presynaptic release of 
acetylcholine, the depression of the fast 
EPSP and ganglionic transmission would 
appear to be entirely a postsynaptic 
event (19). This conclusion is supported 
by the finding that the sensitivity of the 
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carbachol depolarization is as great or 
greater than the fast EPSP to pentobarbi- 
tal. The insensitivity of the slow IPSP is 
particularly noteworthy since this poten- 
tial is generated by small, unmyelinated, 
preganglionic C fibers and, in addition, is 
thought to involve the muscarinic activa- 
tion of an interneuron (10). It has been 
suggested that the sensitivity of central 
synapses to anesthetics might result 
from impulse blockade in the small pre- 
synaptic terminals (3). However, the 
present finding with the slow IPSP would 
tend to minimize the importance of pre- 
synaptic fiber size and also suggests that 
the addition of synapses in a pathway 
does not necessarily increase its sensitiv- 

ity to barbiturates. Rather, it is the type 
of synapse in the pathway which deter- 
mines its sensitivity to barbiturates and 
other anesthetics. 

In summary, the present results dem- 
onstrate that anesthetic concentrations 
(100 to 120 taM) of pentobarbital (i) have 
a strikingly selective depressant action 
on the fast nicotinic EPSP in sympathet- 
ic ganglion cells, (ii) depress ganglionic 
transmission solely by this postsynaptic 
action, and (iii) augment the action of 
GABA. These results emphasize the re- 
markable differential and selective effect 
that pentobarbital has on synaptic and 

drug-induced potentials. A comparison 
of the present results with those obtained 
at central synapses suggests that pento- 
barbital anesthesia results from a post- 
synaptic blockade of excitatory synapses 
which elicit an increase in sodium con- 
ductance, coupled with a postsynaptic 
enhancement of GABA-mediated synap- 
tic inhibition. 
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