
served external larval shell sculpture, 
which appears to be of taxonomic signifi- 
cance in certain Recent species (8, 9), 
may also be helpful in the study of fossil 
forms (Fig. 1C). Detailed examination of 
sequential growth series from single lo- 
calities or horizons will permit generic or 
even specific identification of numerous 
larval bivalves (14) and should be of as- 
sistance in phylogenetic studies. The 
Late Mesozoic was marked by a spec- 
tacular bivalve radiation (15), and Cre- 
taceous growth series will give insight in- 
to the ancestral larval morphologies and 
hence the relationships between some of 
the major families of heterodont eu- 
lamellibranchs. In addition, it will be 
possible to test Kauffman's suggestion 
(16) that the vulnerability of certain ben- 
thic groups to massive extinction at the 
end of the Late Cretaceous may be 
traced to their planktotrophic larval 
stages. Nonplanktotrophic groups (17) 
might be expected to be relatively unaf- 
fected by the Cretaceous-Tertiary 
boundary event. 

Kauffman (18) and Scheltema (19) 
have stressed the significant role that pe- 
lagic dispersal must have played in shap- 
ing bivalve paleobiogeography, particu- 
larly in the light of shifting paleoconti- 
nental configurations. It appears that an 
ontogenetic history is available for at 
least some fossil species. The inter- 
pretation of these fossil larvae, linked 
with the distribution of the adult stages, 
will be an important step in our under- 
standing of molluskan paleodistribu- 
tions. 
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Fig. 1. (A) Schematic diagram of the bacterial 
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nal sensing element; e, internal filling solu- 
tion; andf, plastic electrode body. (B) Detail 
of the membrane phases. 
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hierarchy of possible mediators, ranging 
from enzymes through immunoagents 
and intact vesicles, has recently been 
proposed (2). We describe here a novel 
membrane electrode probe which uses 
intact living bacterial cells in situ to pro- 
duce a highly selective and sensitive po- 
tentiometric response to the amino acid 
L-glutamine in aqueous standards and in 
human serum. The bacterial electrode al- 
so shows a greatly improved lifetime 
over earlier potentiometric sensors (3) 
based on the unstable enzyme glutami- 
nase (E.C. 3.5.1.2). 

One prepares the glutamine electrode 
by holding a layer of whole cells of the 
bacterium Sarcina flava (American Type 
Culture Collection 147) at the surface of 
an ammonia-sensing membrane elec- 
trode (Orion 95-10) with a dialysis mem- 
brane, as shown in Fig. 1A. The bacteria 
are freshly grown on agar slants of nutri- 
ent broth at 30?C for 3 days, then har- 
vested and washed by centrifugation in 
tris-HCl buffer (pH 7.5) containing 0.01 
mole per liter of MnCl2 as activator. No 
special sensitization or treatment of the 
bacteria is required. 

Figure lB illustrates in detail the vari- 
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Glutamine-Selective Membrane Electrode That Uses 

Living Bacterial Cells 

Abstract. A novel bioselective membrane electrode for L-glutamine has been con- 
structed by coupling living bacteria of the strain Sarcina flava to a potentiometric 
ammonia gas sensor. Tests in aqueous standards and human serum show that the 
electrode combines excellent sensitivity and selectivity with rapid response and a 

Glutamine-Selective Membrane Electrode That Uses 

Living Bacterial Cells 

Abstract. A novel bioselective membrane electrode for L-glutamine has been con- 
structed by coupling living bacteria of the strain Sarcina flava to a potentiometric 
ammonia gas sensor. Tests in aqueous standards and human serum show that the 
electrode combines excellent sensitivity and selectivity with rapid response and a 

440 440 



200 - i ~~~ ~~B 

155 -- 

E 

110 110 

* Glutamine 
o Asparagine 
* Aspartic acid 
a Histidine 
* Alanine 
A Arginine 

5 4 

-Log substrate con 

Fig. 2. Response and nomi 
the bacterial sensor in tris-H 
with 0.01M MnC12; E is the 

ous phases and processe 
tip of the bacterial ele 
tially, the bacteria functi( 
biocatalyst to convert glu 
which produces a chan 
sured potential. 

The resulting potentioi 
to varying concentrations 
shown in Fig. 2. We took 
a 10-day-old bacterial eli 
ing increments of freshly 
mine stock solution to 2' 
buffer (pH 7.5) (0.01M I 
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were reached in 5 minute 
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rine, or threonine. In view of the low val- 
ues of Km (Michaelis constant) (approxi- 
mately 10-4M) for bacterial glutaminases 
(5, 6), the favorable electrode response 
to glutamine is entirely reasonable. 

Finally, we tested the response of the 
bacterial electrode in human serum by 
making known additions of glutamine to 
reconstituted pooled serum (General Di- 
agnostics, Calibrate, lot 1956035, 1: 5 
dilution) and obtained the behavior 
shown in Fig. 4. The response slope is 
the same as that found in aqueous stan- 
dards, but the curve is shifted slightly 

i__________ along the potential axis owing to viscosi- 
3 2 ty differences. Termination of the plot of 

centration (M) the lowest concentrations reflects an un- 
nal selectvity of avoidable glutamine background in the 
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potential. control serum. For practical measure- 
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5 ml of tris-HCl ments. When used in this fashion, the 
MnCl2) thermo- electrode was found to be an effective 
state potentials glutamine sensor for at least 2 weeks; 
es or less. Over this may be compared to an effective life- 

the linear range of 10-4M to 102M gluta- 
mine, the response slope of the electrode 
is -48.5 mv per concentration decade 
(correlation coefficient = 0.9997), but a 
useful response is obtained to concentra- 
tions as low as 2 x 10-5M. Since the nor- 
mal serum glutamine concentration falls 
(4) in the range from 4.2 to 7.6 x 10-4M, 
the electrode sensitivity is more than 
adequate. 

We evaluated electrode selectivity by 
measuring the potentiometric response 
to a variety of other amino acids over the 
same concentration range. The data in 
Fig. 2, taken with the same 10-day-old 
bacterial electrode, show that the re- 
sponse to these amino acids is negligible 
except at the very highest concentra- 
tions. To further demonstrate the favor- 
able electrode selectivity, we compared 
the response to glutamine in buffer with 
that to glutamine in buffer also contain- 
ing the maximum normal physiological 
concentrations of the other amino acids. 
As can be seen in Fig. 3, the electrode 
response curves are identical for gluta- 
mine alone and for the mixtures. The 
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Fig. 4. Response of the bacterial sensor to 
glutamine in reconstituted control serum 
(1:5 dilution). 

time of only 1 day for the earlier enzy- 
matic electrode (3). 

The novel concept described here for 
the specific case of the bacterial gluta- 
mine-selective electrode lays the ground- 
work for the development of other sen- 
sors through the appropriate combina- 
tion of various bacterial strains with 
internal ion or gas-sensing elements. In 
view of the very large number of known 
microorganisms and of continuing ad- 
vances in the development of potentio- 
metric membrane electrodes (1), it is not 
unreasonable to expect that other bacte- 
rial electrodes of fundamental and practi- 
cal significance would be feasible. 
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