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When a long-standing mathematical 
problem is solved, the proof is usually 
complicated and technical, if not volumi- 
nous. Many of these proofs can be un- 
derstood only by researchers in narrow 
subspecialties of mathematics. Mathe- 
maticians are taken aback, then, by a re- 
cent solution to a well-known problem in 
information theory. The problem was 
first posed by Claude Shannon, the 
founder of information theory, more 
than 20 years ago. The solution, devised 
by Laszlo Lovasz of the J6zsef Attila 
University at Szeged, Hungary, is short 
(only a few typed pages), simple enough 
to be easily understood by most mathe- 
maticians, and ingenious. 

Many who have seen Lovasz's solu- 
tion to Shannon's problem agree with 
Ronald Graham of Bell Laboratories in 

Murray Hill, New Jersey, who says the 

proof is "remarkable" but that he is not 
surprised that Lovasz is the one who 
came up with it. Although only 28, Lo- 
vasz has already made quite a name for 
himself by solving, within a short period, 
several notable problems. According to 
Bruce Rothschild of the University of 
California at Los Angeles (UCLA), Lo- 
vasz seems to work only on the hard 

problems. 
The information theory problem Lo- 

vasz solved is that of measuring the rate 
at which information can be sent, with 
no possibility of error, over noisy chan- 
nels. These are channels in which one 
signal may be confused with another 
when the signals are received. Informa- 
tion theorists sometimes assume that not 
all signals transmitted over noisy chan- 
nels can be confused with each other. In 
these idealized situations, two signals 
may be confused but a third may be so 
different from either of them that it is 
never confused with them. 

When some of the signals sent over a 
noisy channel cannot be mutually con- 
founded, Shannon noted a way to trans- 
mit error-free messages at a maximum 
rate. The trick is to send blocks of sig- 
nals, rather than individual ones, and use 
nonconfoundable signals in the design of 
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the blocks. In that way, no block can be 
confused with another. It turns out that, 
in each case, there is an upper limit to 
the amount of information that can be 
sent in this way. This maximum-known 
as the Shannon capacity-has, except in 
a few simple cases, proved impossible to 
determine exactly. 

When studying sets of confoundable 
signals, mathematicians often represent 
the systems as graphs. Each point on 
such a graph denotes a signal, and two 

points are connected by a line if the sig- 
nals they represent can be confused. The 
problem of determining the Shannon ca- 
pacity of a system whose graph is a pen- 
tagon (Fig. 1) has been described by Da- 
vid Cantor of UCLA as "the first non- 
trivial case of the problem of finding 
Shannon capacities." He says that the 
problem has proved a continuing chal- 

lenge to mathematicians, and some of 
the brightest people he knows have 
worked on it. This is the problem that 
Lovasz solved. 

In order to find the Shannon capacity 
of the pentagon, Lovasz transformed the 
problem from one in information theory 
into one in geometry. Other investigators 
had previously used methods of linear 
programming to estimate upper bounds 
for the problem. Lovasz's method not 

only provides upper bounds at least as 
accurate as those given by linear pro- 
gramming, but also, in the case of the 

a b 
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d 
Fig. 1. A graph of the problem Lovasz solved. 
Points a, b, c, d, and e refer to distinct signals. 
Points connected by a line can be confused 
with each other. Thus a and b can be con- 
fused, but a and d cannot. If one-letter mes- 
sages are sent, only two signals, such as a and 
d, can be sent in one time period with no dan- 
ger of confusion. Thus, in two time periods, 
four different messages can be sent with no 
errors. If two-letter messages are sent (con- 
stituting blocks of two signals), there are five 
distinct nonconfoundable messages that can 
be sent in two time periods. These messages 
are aa, be, ce, db, and ed. 
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pentagon, provides an upper bound that 
is the same as a lower bound known pre- 
viously. Thus Lovasz's method gives the 
exact value of the Shannon capacity. 
Moreover, Lovasz's proof is so simple, 
Cantor says, that if someone had devised 
it 20 years ago, mathematicians would 
have dismissed the problem as a trivial 
one. Nonetheless, Edgar Gilbert, also of 
Bell Laboratories, points out that Lo- 
vasz's inspiration for his proof seems un- 
precedented. "What he did took me by 
surprise," Gilbert says. 

Although Lovasz's proof is just begin- 
ning to circulate among mathematicians, 
some are already applying his method to 
other information theory problems. For 
example, Lawrence Shepp and Andrew 
Odlyzko of Bell Laboratories in Murray 
Hill and, independently, Howard Rum- 
sey, Eugene Rodemich, and Robert 
McEliece at the Jet Propulsion Labora- 
tory in Pasadena, California, have ap- 
plied it to a problem centering on error- 

correcting codes. These are codes in 
which a certain amount of redundancy is 
introduced, thereby allowing those re- 
ceiving a message to detect errors. Od- 
lyzko says that "it is possible that Lo- 
vasz's method can be pushed still fur- 
ther" in applications to information the- 
ory problems. Lovasz himself says that 
he is applying his method to other prob- 
lems similar to the one he solved. 

Most investigators familiar with Lo- 
vasz's solution say it has no immediate 
practical import because, in practice, 
there is no such thing as two signals that 
can never be confused with each other. 
Thus, most codes are designed so that 
the probability of errors is small, but not 
zero. Even Shannon describes the prob- 
lem of finding Shannon capacities as a 
"conceptual problem." However, he 
says that many important scientific prob- 
lems were first posed as conceptual 
problems, and he hopes that Lovasz's 
method will lead to solutions for a whole 
class of problems. In any event, he says, 
"I am interested and happy to see this 
whole problem of the pentagon finally 
laid to rest."-GINA BARI KOLATA 

SCIENCE, VOL. 199, 6 JANUARY 1978 

pentagon, provides an upper bound that 
is the same as a lower bound known pre- 
viously. Thus Lovasz's method gives the 
exact value of the Shannon capacity. 
Moreover, Lovasz's proof is so simple, 
Cantor says, that if someone had devised 
it 20 years ago, mathematicians would 
have dismissed the problem as a trivial 
one. Nonetheless, Edgar Gilbert, also of 
Bell Laboratories, points out that Lo- 
vasz's inspiration for his proof seems un- 
precedented. "What he did took me by 
surprise," Gilbert says. 

Although Lovasz's proof is just begin- 
ning to circulate among mathematicians, 
some are already applying his method to 
other information theory problems. For 
example, Lawrence Shepp and Andrew 
Odlyzko of Bell Laboratories in Murray 
Hill and, independently, Howard Rum- 
sey, Eugene Rodemich, and Robert 
McEliece at the Jet Propulsion Labora- 
tory in Pasadena, California, have ap- 
plied it to a problem centering on error- 

correcting codes. These are codes in 
which a certain amount of redundancy is 
introduced, thereby allowing those re- 
ceiving a message to detect errors. Od- 
lyzko says that "it is possible that Lo- 
vasz's method can be pushed still fur- 
ther" in applications to information the- 
ory problems. Lovasz himself says that 
he is applying his method to other prob- 
lems similar to the one he solved. 

Most investigators familiar with Lo- 
vasz's solution say it has no immediate 
practical import because, in practice, 
there is no such thing as two signals that 
can never be confused with each other. 
Thus, most codes are designed so that 
the probability of errors is small, but not 
zero. Even Shannon describes the prob- 
lem of finding Shannon capacities as a 
"conceptual problem." However, he 
says that many important scientific prob- 
lems were first posed as conceptual 
problems, and he hopes that Lovasz's 
method will lead to solutions for a whole 
class of problems. In any event, he says, 
"I am interested and happy to see this 
whole problem of the pentagon finally 
laid to rest."-GINA BARI KOLATA 

SCIENCE, VOL. 199, 6 JANUARY 1978 42 42 


