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Pearson (1) analyzed data for metabo- 
lism of shrews and small mice and con- 
cluded that because metabolic rates per 
unit of body mass become increasingly 
large for smaller and smaller mammals, 
there exists a lower limit to mammalian 
size beyond which metabolic rates would 
become impossibly large. Indeed, his 

analysis predicted that the smallest 
mammal should be approximately the 
size of the smallest shrew (approximate- 
ly 2.5 g). In this report I extend the work 
of Pearson to ask, Is the minimum size 
of mammalian homeotherms entirely a 

property of the animals, or is it, in part, 
determined by the thermal environment? 
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Fig. 1. Metabolic 
rates (M) of homeo- 
therms as a function 
of body mass (m). 
Minimum metabolic 
rates of (0) small 
mammals at thermo- 
neutrality (12), (A) 
shrews held at 24?C 
(I), and (U) small 
mammals held at 0?C 
(2). The best-fit equa- 
tion for mammals at 
thermoneutrality is 
M = 0.033m-?039 (r2 = 
.48); the best fit for 
shrews at 24?C, M = 
0.103m 0.475 (r2 = 

.96); and the best fit 
for mammals at 0?C, 
M = 0.27m-0.64 (r2 = 
.92). 
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some data showing that British shrews 
have metabolic rates (at rest and during 
activity) that are not different from those 
of similarly sized mice (4). 

For several reasons related to heat 
transfer from organisms (namely, that 
the surface area/body mass ratio of ho- 

,ears to be related to meotherms is greater in smaller animals, 
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see Fig. 1 for re- small mammals need not have extraordi- 
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g shrews and bats) duction to remain homeothermic. How- 
s that are only one- ever, the range of thermal environments 
-d (2) for the masked in which an animal can maintain a mini- 

mum metabolic rate and a constant body 
body mass relation- temperature becomes smaller for smaller 
otherms do not show animals, such that an infinitely small ani- 
e in metabolism near mal can maintain a constant body tem- 

perature only in a perfectly constant 
thermal environment. Thus, a very small 
animal can be homeothermic if (i) it has 
the capacity for extraordinarily high heat 
production (6), or (ii) it has the capacity 
for precise body temperature regulation 
through nanoclimate selection and possi- 
bly the ability to be facultatively homeo- 
thermic. The former seems to describe 
endothermic mammals and birds, and 
the latter tends to describe numerous 
reptiles and insects. 

How, then, can one predict the mini- 
mum size of endothermic homeotherms? 

~-----__ ~ The answer is that it is not possible to 
predict the smallest size of endothermic 
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ments). However, in cold environments 
small endothermic homeotherms gener- 
ally must produce a larger amount of 
heat to maintain a constant body temper- 
ature which is higher than the ambient 
effective environmental temperature (7). 
Thus, if there is a limit to the maximum 
heat production (metabolic rate) of a 
homeotherm (8), then the lower limit to 
size for homeotherms is also determined 
for particular ambient thermal environ- 
ments. For example, assume that the 
maximum attainable metabolic rate for 
mammals is 0.065 watt/g. Then a mam- 
mal in a thermoneutral environment ap- 
parently could be infinitely small and al- 
so be homeothermic (Fig. 1). On the oth- 
er hand, a mammal held in an ambient 
thermal environment of 24?C could be no 
smaller than about 3.5 g (Fig. 1) and re- 
main homeothermic (9). Moreover, a 
mammal kept at 0?C could not be smaller 
than about 8 g (Fig. 1) and be homeo- 
thermic (10). 

In summary, a species need only 
evolve a capacity for endothermic heat 
production if the ability (or the cost of 
the ability) to precisely regulate body 
temperature behaviorally is prohibitive. 
If an endothermic strategy is adopted, a 
minimum body size is imposed that ap- 
pears to be determined primarily as a 
function of (i) the animal's maximum 
rate of endogenous heat production (6), 
(ii) the ambient thermal environment, 
and (iii) the animal's ability to be a daily 
or seasonally facultative homeotherm 
(11). 
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to 2 billion years ago. 

Almost all solar models predict an in- 
crease in the solar luminosity on the or- 
der of 25 percent during the life of the 
sun. However, excluding brief excur- 
sions, there is no observational or exper- 
imental evidence that the solar constant 
has been significantly smaller in the past 
(1). In fact, recent evidence indicates 
that over cosmic time scales the temper- 
ature of the earth has actually decreased 
(2). Yet simple models (3, 4) of terrestrial 
climate indicate that a decrease of even a 
few percent in the solar constant pro- 
duces a completely glaciated earth, 
which, because of the high albedo of ice, 
requires a solar constant higher than the 
present value to thaw the planet. At least 
superficially, we have a glaring conflict 
between solar models and the biological 
and isotopic temperature history of the 
earth. 

While individuals among climatolo- 
gists and stellar evolution theorists have 
been aware of this problem for some 
time (5), it has been ignored by the com- 
munities as a whole. Sagan and Mullen 
(6) and Katz (7) point out that the pre- 
dicted solar luminosity increase is not 
likely to be substantially in error and 
thus leads to a conflict with the temper- 
ature history of the earth. They suggest 
modifications to the earth's early atmo- 
sphere as a solution. However, most in- 
terest in terrestrial effects of solar evolu- 
tion has been in the well-established os- 
cillatory temperatures (8) of the past 
million years or so and their possible re- 
lation to a temporary excursion in the so- 
lar luminosity (9). The fact that some 
suggested solutions to the solar neutrino 
problem had associated luminosity ex- 
cursions seemed attractive. 

In this report we would like to empha- 
size the magnitude of the conflict. First 
we will show that an increasing solar lu- 
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minosity is a basic feature shared by 
even quite exotic solar neutrino-oriented 
models. Then we will examine the con- 
flict with climate models and possible so- 
lutions in more detail. 

The complexity of stellar evolution 
calculations often gives rise to the suspi- 
cion that they might be inaccurate. In 
some details such as the flux of high-en- 
ergy neutrinos this may be the case, but 
the luminosity increase discussed here 
depends in a fundamental way on the dif- 
ficult to avoid assumption that the sun's 
energy source is the fusion of hydrogen 
into helium. This can be shown quite 
simply. 

Dimensional analysis of the equations 
of stellar structure as in (10), for ex- 
ample, shows that the luminosity scales 
as 
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ficult to avoid assumption that the sun's 
energy source is the fusion of hydrogen 
into helium. This can be shown quite 
simply. 

Dimensional analysis of the equations 
of stellar structure as in (10), for ex- 
ample, shows that the luminosity scales 
as 
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where the opacity law has been taken to 
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stellar mass and radius; MH is the mass 
of the hydrogen atom; ,t is the mean mo- 
lecular weight; a is the radiation density 
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The dependence on radius is weak 
(and the solar radius does not change 
rapidly), so as L. increases because of hy- 
drogen burning, L increases approxi- 
mately as 
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Implications of Solar Evolution for the Earth's Early Atmosphere 

Abstract. The roughly 25 percent increase in luminosity over the life of the sun 
shared by many different solar models is shown to be a very general result, independ- 
ent of the uncertainties suggested by the solar neutrino experiment. Superficially, 
this leads to a conflict with the climatic history of the earth, and if basic concepts of 
stellar evolution are not fundamentally in error, compensating effects must have 
occurred, as first pointed out by Sagan and Mullen. One possible interpretation sup- 
ported by recent detailed models of the earth's atmosphere is that the greenhouse 
effect was substantially more important than at present even as recently as 1 billion 
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