
would be more secure, they should be 
older, which is the case (3). As their 
numbers continued to grow in the buffer 
zones, maturing individuals would even- 
tually disperse and extend their home 

ranges beyond those in which they were 
born. With succeeding generations, the 
home ranges would proliferate and ex- 
tend farther and farther into the wolf ter- 
ritory cores (4, 13). Such deer in their 
prime have the highest probability of sur- 
viving wolf predation (1), so they could 
repopulate the core for several years in 
relative security. After 4 or 5 years, 
these colonizing deer might become vul- 
nerable to wolf predation, but by that 
time, their offspring would be helping re- 
populate the core along with additional 
dispersers from the buffer zones. Fur- 
thermore, since male deer tend more to 
disperse and to disperse farther (4, 13), 
chances are better that as the deer herd 
increased in the territory core, it would 
contain a preponderance of males. Males 
are more expendable to a deer herd be- 
cause deer are highly polygamous. 

Winter is the season of greatest vul- 
nerability of adult deer to wolves (3), and 
the proposed theory implies that the 
more secure (and thus the largest and 
longest lasting) winter concentration 
areas would be distributed primarily 
along wolf-pack buffer zones. This is 
currently the case in northeastern Min- 
nesota (3, 12). The theory predicts and 
observations confirm that some deer 
might concentrate in more temporary 
yards in territory cores, but under ad- 
verse conditions those yards are the first 
to disappear (10). 

The theory assumes that wolf-pack 
territory boundaries are relatively stable 
over long periods. No studies have been 
conducted long enough in a large enough 
area to determine whether this is true. 
However, the Harris Lake pack has oc- 
cupied the same territory for at least 9 
years (2) and many of its neighbors have 
persisted in their territories for several 
years (6, 14). Furthermore the spatial or- 
ganizations of wolf populations would 
tend to keep boundaries stable because 
of the constant territorial "pressure" of 
all packs (6). 

I have found only one other proposal 
that a predator's territorial boundaries 
serve as reservoirs for prey populations. 
After publishing the first data on this 
subject (2, 3), I encountered Hickerson's 
"The Virginia deer and intertribal buffer 
zones in the upper Mississippi Valley," 
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tribes had the effect of preventing com- 
peting hunters from occupying the best 
game region intensively enough to de- 
plete the [deer] supply. ... In the one 
instance in which a lengthy truce was 
maintained between certain Chippewa 
and Sioux, the buffer, in effect a protec- 
tive zone for the deer, was destroyed, 
and famine ensued" (15). Thus, such a 
possible evolutionary strategy of a prey 
species-taking advantage of the spatial 
organization of predators to provide 
greater security-should be sought in 
other predator-prey systems. 
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U.S. Fish and Wildlife Service, 
Laurel, Maryland 20818 

References and Notes 

1. A. Murie, U.S. Natl. Park Serv. Fauna Natl. 
Parks U.S. Fauna Ser. 5 (1944), p. 121; D. H. 
Pimlott, J. A. Shannon, G. B. Kolenosky, Ont. 
Dep. Lands For. Res. Rep. (Wildlife) 87, 40 
(1969); L. D. Mech, U.S. Natl. Park Serv. 
Fauna Natl. Park U.S. Fauna Ser. 7 (1966), p. 
145; The Wolf (Doubleday, New York, 1970); 

_ and L. D. Frenzel, U.S. For. Serv. Res. 
Rep. NC-52 (1971), p. 35. 

2. L. D. Mech, in Proceedings of the 1975 Pre- 
dation Symposium, R. L. Phillips and C. Jonkel, 
Ed. (University of Montana, Missoula, 1977), 
pp. 55-83. 

3. R. L. Hoskinson and L. D. Mech, J. Wildl. 
Manage. 40, 429 (1976). 

tribes had the effect of preventing com- 
peting hunters from occupying the best 
game region intensively enough to de- 
plete the [deer] supply. ... In the one 
instance in which a lengthy truce was 
maintained between certain Chippewa 
and Sioux, the buffer, in effect a protec- 
tive zone for the deer, was destroyed, 
and famine ensued" (15). Thus, such a 
possible evolutionary strategy of a prey 
species-taking advantage of the spatial 
organization of predators to provide 
greater security-should be sought in 
other predator-prey systems. 

L. DAVID MECH* 

Patuxent Wildlife Research Center, 
U.S. Fish and Wildlife Service, 
Laurel, Maryland 20818 

References and Notes 

1. A. Murie, U.S. Natl. Park Serv. Fauna Natl. 
Parks U.S. Fauna Ser. 5 (1944), p. 121; D. H. 
Pimlott, J. A. Shannon, G. B. Kolenosky, Ont. 
Dep. Lands For. Res. Rep. (Wildlife) 87, 40 
(1969); L. D. Mech, U.S. Natl. Park Serv. 
Fauna Natl. Park U.S. Fauna Ser. 7 (1966), p. 
145; The Wolf (Doubleday, New York, 1970); 

_ and L. D. Frenzel, U.S. For. Serv. Res. 
Rep. NC-52 (1971), p. 35. 

2. L. D. Mech, in Proceedings of the 1975 Pre- 
dation Symposium, R. L. Phillips and C. Jonkel, 
Ed. (University of Montana, Missoula, 1977), 
pp. 55-83. 

3. R. L. Hoskinson and L. D. Mech, J. Wildl. 
Manage. 40, 429 (1976). 

4. M. E. Nelson, thesis, University of Minnesota 
(1977). 

5. L. L. Rogers, L. D. Mech, D. K. Dawson, J. M. 
Peek, M. Korb, in preparation. 

6. L. D. Mech,Am. Zool. 12, 642 (1972); U.S. For. 
Serv. Res. Rep. NC-97 (1973), p. 2; Proc. Int. 
Congr. Game Biol. 11, 315 (1974). 

7. R. L. Peters and L. D. Mech, Am. Sci. 63, 628 
(1975). 

8. P. Mahrenke, III,J. Mammal. 52, 630 (1971); V. 
Van Ballenberghe and A. W. Erickson, Am. 
Midi.'Nat. 90, 490 (1973). 

9. L. D. Mech, J. Mammal. 58, 559 (1977). 
10. and P. D. Karns, U.S. For. Serv. Res. 

Rep. NC-148 (1977). 
11. V. Van Ballenberghe and L. D. Mech, J. Mam- 

mal. 56, 44 (1975); U. S. Seal, L. D. Mech, V. 
Van Ballenberghe, ibid., p. 64. 

12. Compare deer-yard locations in A. B. Erickson, 
V. E. Gunvalson, M. H. Stenlund, D. W. Bur- 
calow, and L. H. Blankenship [Minn. Dep. Con- 
serv. Tech. Bull. 5, 65 (1961)] with wolf-pack ter- 
ritories in L. D. Mech [U.S. For. Serv. Res. 
Rep. NC-97 (1973), p. 2]. 

13. R. E. Hawkins and W. D. Klimstra, J. Wildl. 
Manage. 34, 407 (1970); _ , D. C. Autry, 
ibid. 35, 216 (1971). 

14. Unpublished radio-tracking data by L. D. Mech 
on 19 wolf packs in the same study area for vary- 
ing periods from 1968 through 1977 indicate that 
most pack territories are relatively stable over 
this period. 

15. H. Hickerson, in Man, Culture, and Animals: 
The Role of Animals on Human Ecological Ad- 
justments, A. Leeds and A. Vayda, Eds. 
(AAAS, Washington, D.C., 1965), p. 43. 

i 16. I thank the following for supporting this study: 
Endangered Wildlife Research Program, Patux- 
ent Wildlife Research Center, U.S. Fish and 
Wildlife Service; U.S. Forest Service, North 
Central Forest Experiment Station; and Ober 
Foundation. 

* Present address: North Central Forest Experi- 
mental Station, St. Paul, Minn. 55108. 

31 May 1977 

4. M. E. Nelson, thesis, University of Minnesota 
(1977). 

5. L. L. Rogers, L. D. Mech, D. K. Dawson, J. M. 
Peek, M. Korb, in preparation. 

6. L. D. Mech,Am. Zool. 12, 642 (1972); U.S. For. 
Serv. Res. Rep. NC-97 (1973), p. 2; Proc. Int. 
Congr. Game Biol. 11, 315 (1974). 

7. R. L. Peters and L. D. Mech, Am. Sci. 63, 628 
(1975). 

8. P. Mahrenke, III,J. Mammal. 52, 630 (1971); V. 
Van Ballenberghe and A. W. Erickson, Am. 
Midi.'Nat. 90, 490 (1973). 

9. L. D. Mech, J. Mammal. 58, 559 (1977). 
10. and P. D. Karns, U.S. For. Serv. Res. 

Rep. NC-148 (1977). 
11. V. Van Ballenberghe and L. D. Mech, J. Mam- 

mal. 56, 44 (1975); U. S. Seal, L. D. Mech, V. 
Van Ballenberghe, ibid., p. 64. 

12. Compare deer-yard locations in A. B. Erickson, 
V. E. Gunvalson, M. H. Stenlund, D. W. Bur- 
calow, and L. H. Blankenship [Minn. Dep. Con- 
serv. Tech. Bull. 5, 65 (1961)] with wolf-pack ter- 
ritories in L. D. Mech [U.S. For. Serv. Res. 
Rep. NC-97 (1973), p. 2]. 

13. R. E. Hawkins and W. D. Klimstra, J. Wildl. 
Manage. 34, 407 (1970); _ , D. C. Autry, 
ibid. 35, 216 (1971). 

14. Unpublished radio-tracking data by L. D. Mech 
on 19 wolf packs in the same study area for vary- 
ing periods from 1968 through 1977 indicate that 
most pack territories are relatively stable over 
this period. 

15. H. Hickerson, in Man, Culture, and Animals: 
The Role of Animals on Human Ecological Ad- 
justments, A. Leeds and A. Vayda, Eds. 
(AAAS, Washington, D.C., 1965), p. 43. 

i 16. I thank the following for supporting this study: 
Endangered Wildlife Research Program, Patux- 
ent Wildlife Research Center, U.S. Fish and 
Wildlife Service; U.S. Forest Service, North 
Central Forest Experiment Station; and Ober 
Foundation. 

* Present address: North Central Forest Experi- 
mental Station, St. Paul, Minn. 55108. 

31 May 1977 

Patterns of Supernumerary Limb Regeneration Patterns of Supernumerary Limb Regeneration 

In their article "Pattern regulation in 
epimorphic fields," French et al. (1) dis- 
cuss rules which they use to predict the 
results of a large number of grafting and 
transplantation experiments in amphibi- 
ans and insects. Here I show how a well- 
known mathematical result can be used 
to derive many of their predictions in a 
simple and unified way. 

In (1) it was proposed that each cell 
has information with respect to its angu- 
lar position on a growing limb (2). This 
positional information is represented by 
a digit, 0 through 12, where positions 0 
and 12 are identical. Left limbs are repre- 
sented by a clockwise sequence and right 
limbs by a counterclockwise sequence. 
Grafting experiments are represented 
schematically by giving positional values 
on two concentric circles, where the out- 
er circle gives positional values on the 
stump and the inner circle gives position- 
al values on the graft (Fig. 1). The con- 
sequences of limb grafting experiments 
are predicted by use of the following as- 
sumptions. 

1) When normally nonadjacent posi- 
tional values are confronted in a graft ex- 
periment, growth occurs until cells with 
all intermediate positional values have 
been intercalated. The intercalation oc- 

In their article "Pattern regulation in 
epimorphic fields," French et al. (1) dis- 
cuss rules which they use to predict the 
results of a large number of grafting and 
transplantation experiments in amphibi- 
ans and insects. Here I show how a well- 
known mathematical result can be used 
to derive many of their predictions in a 
simple and unified way. 

In (1) it was proposed that each cell 
has information with respect to its angu- 
lar position on a growing limb (2). This 
positional information is represented by 
a digit, 0 through 12, where positions 0 
and 12 are identical. Left limbs are repre- 
sented by a clockwise sequence and right 
limbs by a counterclockwise sequence. 
Grafting experiments are represented 
schematically by giving positional values 
on two concentric circles, where the out- 
er circle gives positional values on the 
stump and the inner circle gives position- 
al values on the graft (Fig. 1). The con- 
sequences of limb grafting experiments 
are predicted by use of the following as- 
sumptions. 

1) When normally nonadjacent posi- 
tional values are confronted in a graft ex- 
periment, growth occurs until cells with 
all intermediate positional values have 
been intercalated. The intercalation oc- 

curs by the shortest route ("shortest in- 
tercalation rule"). 

2) If, in the resulting map of positional 
values, a complete circular sequence 
arises, then a limb will be regenerated 
whose handedness is predicted by the 
orientation of positional values around 
the circle ("complete circle rule for dis- 
tal transformation"). 

Figure 1 shows three maps of position- 
al values which were presented in (1) to 
illustrate the application of these rules to 
grafting experiments. In Fig. la no su- 
pernumerary limbs are regenerated, in 
Fig. lb one right and one left super- 
numerary limb are regenerated, and in 
Fig. Ic two right supernumerary limbs 
are regenerated. The cases shown in Fig. 
1, a and b, correspond to grafting a left 
limb on a left limb stump after rotation 
by 180?, and the case shown in Fig. Ic 
corresponds to grafting a right limb on a 
left limb stump so that anterior-posterior 
axes are opposed. 

The restrictions on the number and the 
handedness of supernumerary limbs fol- 
low immediately from a consideration of 
continuity properties of a class of maps 
defined on planar regions. These maps, 
which I call phase maps, associate to 
each point in a planar region a phase q, 
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0 -<> b 27r, where the phases 0 and 27r 
are the same. Except for a finite number 
of isolated points, called singular points, 
4 is a continuous map from the planar 
region into the unit circle; k is not de- 
fined at the singular points. The diagrams 
reproduced in Fig. 1 give examples of 
phase maps in planar regions. For each 
case the phase maps are constructed in 
the planar region bound by the large 
circle which gives positional information 
on the left limb stump (3 o'clock = 7r/2, 
6 o'clock = 7r, 9 o'clock = 37r/2, and so 

on). Although the singular points are not 
explicitly shown, the existence of these 
points is required by the results which 
follow. 

The predictions given by French et al. 
can be interpreted in terms of singular 
points in phase maps. In the following 
discussion, > is a phase map defined in a 
planar region, and C is any closed curve 
in the planar region which does not pass 
through a singular point. A remarkable 
feature of phase maps is that the phases 
along C place restrictions on the singular 
points in the area bound by C. These re- 
strictions are made precise in the follow- 
ing way. As C is traversed once in a 
counterclockwise orientation, 0 will 
pass through 2rI, where from continuity 
I is a positive or negative integer, or ze- 
ro. The quantity I is called the index of 
C. For example, in Fig. 1 the index of 
circles specifying left limbs is - 1 and the 
index of circles specifying right limbs is 
+1. The index of an isolated singular 
point can be computed by drawing a very 
small circle A around the singular point 
so that there is only one singular point in 
the region bound by A. The index of the 
singular point is equal to the index ofA. 

Theorem. The index of C is equal to 
the sum of the indices of the singular 
points in the region bound by C (3, 4). 

I now apply this theorem to the limb 

grafting experiments (Fig. 1). Here C is 
the curve specifying positional informa- 
tion on the left stump. The index of C is 
-1. Hence, the sum of the indices of the 
singular points in the region bound by C 
must also equal -1. 

Case 1. Left transplant grafted on left 
stump (Fig. 1, a and b). The index of the 
curve defining positional information on 
the left transplant is -1. Consequently 
the sum of the indices of the singular 
points in the annulus must be zero 
(- 1 + 0 = - 1). If the indices of singular 
points are restricted to +1 (implying 
right supernumerary limbs) and -1 (im- 
plying left supernumerary limbs) then 
the number of right and left super- 
numerary limbs generated in the annulus 
must be equal. 

Case 2. Right transplant grafted on 
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left stump (Fig. Ic). The index of the 
curve defining positional information on 
the right transplant is +1. It is necessary 
that there exist additional singular points 

a 

b 

CI 
12/0 

Fig. 1. Schematic representation of positional 
values in limb grafting experiments, with in- 
tercalated positional values, after application 
of rules described in the text. The outer circle 
represents the host circumference and the in- 
ner circle represents the graft circumference. 
Clockwise orientations of positional values 
specify left limbs and counterclockwise orien- 
tations specify right limbs. (a and b) Left limb 
transplanted on left limb stump after rotation 
by 180?. (c) Right limb transplanted on left 
limb stump so that anterior-posterior loca- 
tions are opposed. Abbreviations: I, internal; 
A, anterior; E, external, and P, posterior. [Re- 
produced from (1)] 

in the annulus. If the indices of singular 
points are restricted to + 1 and -1, then 
there must be two more left limbs than 
right limbs generated in the annulus 
(1- -2 -1). 

These restrictions follow from a con- 
sideration of the continuity properties of 
phase maps and do not require a com- 
putation of the shortest intercalation 
route. In one sense, this generalization 
strengthens the argument in (1), since 
there is no way at present to directly 
measure the "distance" between dif- 
ferent positional values. Note, however, 
that consideration of continuity alone 
cannot be used to predict the location of 
supernumerary limbs or their exact num- 
ber. Closer analysis of these factors may 
be helpful in sorting out the details of the 
intercalation process and may shed light 
on the underlying cellular and biochemi- 
cal mechanisms. 

The mathematics predict the possi- 
bility of other outcomes of grafting ex- 
periments in addition to those consid- 
ered in (1). First, there may be singular- 
ities whose index is different from +1 
and -1. For example, a singularity with 
index +2 could generate a double right 
limb. Also there can clearly be more than 
two supernumerary limbs. 

I emphasize that my goal has been to 
give a way to predict the consequences 
of the assumptions in (1), but not to criti- 
cally evaluate those assumptions. There 
may be ways of specifying positional in- 
formation other than the polar coordi- 
nate system adopted here and in (1) that 
lead to similar predictions about hand- 
edness of supernumerary limbs (5). 

LEON GLASS 

Department of Physiology, McGill 
University, Montreal, Canada H3G 1 Y6 

References and Notes 

1. V. French, P. J. Bryant, S. V. Bryant, Science 
193, 969 (1976). This article should be consulted 
for references to the experimental literature. 

2. Both radial and angular positional values are as- 
signed in (1). Here I consider only the angular 
values. 

3. Although this theorem is generally proved for 
vector fields on planar regions [see, for example, 
V. I. Arnold, Ordinary Differential Equations 
(MIT Press, Cambridge, Mass., 1973), section 
36], it also holds for phase maps as I have de- 
fined them. Mathematically inclined readers 
who wish to pursue the differences between 
phase maps and vector fields should note that 
for phase maps defined on oriented, compact 
surfaces the sum of the indices of the singular 
points equals zero and that the Euler-Poincar6 
characteristic of the surface does not enter. 

4. Applications of this result in biological and 
chemical contexts can be found in the elegant 
studies of A. T. Winfree [J. Theor. Biol. 38, 363 
(1973); Science 175, 634 (1972); ibid. 181, 937 
(1973)]. 

5. S. A. Kauffman, S. A. Newman, A. T. Winfree, 
personal communication. 

6. I have benefited from conversations with S. A. 
Kauffman, S. A. Newman, M. C. Mackey, J. 
Milton, and A. T. Winfree. This research has 
been supported by grant A0091 from the Nation- 
al Research Council and by a grant from the 
Cancer Research Society of Montreal. 

30 March 1977 

SCIENCE, VOL. 198 

12 12 t) 

1 

12 
o 


	Cit r293_c389: 


