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en- entropies, at 298.15?K, critically com- 
pre- piled by Robie and Waldbaum (4). At 
lin- 298.15?K, Ca-olivine is more stable than 
en- larnite (f3-Ca2SiO4), and it is Ca-olivine 
vol- that is correlated by Eq. 1. Saxena (1) 
es- specifically excludes Ca-olivine from his 

lets correlation for orthosilicates, presum- 
line ably because his estimated entropy was 
I to too high by 9.15 gibbs/mole. 
for A more directly applicable form of Eq. 
Zn, 1 is the expression 
was 3 
and S, = Sx + nR ln [M,VV2/3/(MxVx213)] 2 ena (2) 

(i)) 
opy where y refers to a compound whose en- 
'ell- tropy is to be estimated and x signifies a 
Dm- reference compound, that is, one chem- 
)ns, ically and structurally similar to y whose 
en- entropy is known. For instance, to es- 

timate the entropy at 298.15?K of py- 
ex- rope (Mg3A12Si3O52), we use grossularite 
of (Ca3Al2Si3O12) as the reference com- 

een pound. Substituting in Eq. 2 the ex- 
be perimental data tabulated in (1), we 

)m- have pyrope entropy = 1.5(20)1.987 In 
)e a [403.15(1 13.27)2/3/(450.454(125.3)23)] = 
wn, 57.7 = 47.07 gibbs/mole. 
ats, The estimation of entropy at 298.15?K 
i to for crystalline silicates containing transi- 
by tion metal ions requires an additional 

term to account for the disorder of mag- 
netic moments. For compounds of the 

(1) first transition series, Ulbrich and Wald- 
baum (5) have shown that magnetic en- 

re- 
f tropy Sm can be approximated from the 

spin quantum number S by the equation 
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For example, in rhodonite (MnSiO3), S 
for divalent manganese is 5/2 and, from 
Eq. 3, Sm = 3.561 gibbs/g-atom. The lat- 
tice entropy at 298.15?K, estimated from 
enstatite (MgSiO3) according to Eq. 2, is 
21.26 gibbs/mole. The sum, 3.561 + 
21.26 = 24.82 gibbs/mole, agrees quite 
closely with the experimental entropy of 
24.5 ? 0.5 gibbs/mole given in (4). We 
can estimate (Table 2) the entropies of 
the orthosilicates tephroite (Mn2SiO4) 
and fayalite (Fe2SiO4) from Eq. 3 by cal- 
culating lattice entropy from Eq. 1, using 
the average A (-134.47 gibbs/mole) ob- 
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Table 2. Calculation of the entropies of tephroite and fayalite. 

Lattice Mag- Esti Exper- 
l e netic r imental 

Formula entropy mated entropy 
entropy entropy 

(Eq. 1) entropy 

Mn2SiO4 30.30 7.12 37.42 39.0 + 1.0 
Fe2SiO4 29.83 6.40 36.23 35.45 ? 0.4 
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tained from the four diamagnetic ortho- 
silicates listed in Table 1. 

A similar procedure can be used to es- 
timate the entropy of the garnet alman- 
dine. Using grossularite as the reference 
compound in Eq. 2, we obtain an esti- 
mated lattice entropy for almandine of 
60.34 gibbs/mole. Since S = 2 for Fe2+, 
the magnetic entropy (from Eq. 3) is 9.59 
gibbs per mole (that is, 3 g-atoms). Thus, 
the estimated entropy at 298.15?K is 
60.34 + 9.59 = 69.93 gibbs/mole, a val- 
ue somewhat greater than the 68.13 
gibbs/mole estimated by Saxena (1). 

It is instructive to compare Saxena's 
correlation with the methods given here 
for estimating the entropy of another gar- 
net. For andradite (Ca3Fe2Si3012), the 
entropy at 298.15?K (78.7 + 1.3 gibbs/ 
mole) has been computed (6) from heat 
capacity data (7). The molar volume, 
131.65 cm3, is obtained from the unit cell 
parameter, 12.048 A, given in Wyckoff 
(8). The substitution of 131.65 cm3 in 
equation 2 of Saxena (1) yields an en- 
tropy of 94.32 gibbs/mole. Since S = 5/2 
for Fe3+, Sm = 2R In 6 = 7.12 gibbs/ 
mole. If grossularite is used as the refer- 
ence compound in Eq. 2, we obtain;66.85 
gibbs/mole as the lattice entropy of an- 
dradite; this added to the magnetic en- 
tropy gives an entropy of 73.97 gibbs/ 
mole, an estimate much closer to the ex- 
perimental value than is predicted from 
(1). This example amply illustrates the 
pitfall of estimating entropy from volume 
alone. 
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Table 1. Comparison of the entropy estimates of silicates by three different methods. Averages 
of the constant A used [equation 1 of (2)] are -134.47, -87.67, and -283.33 gibbs/mole for 
ortho-, meta-, and framework silicates, respectively. Abbreviations: exp, experimental; 
calc, calculated; oxides, oxide summation; N.P., not possible without more data. 

Sexp - Scalc 
Silicate Sexp - Soxides Saxena Cantor 

Orthosilicates 
Be2SiO4 0.14 1.46 -1.25 
,8-Ca,SiO4 0.33 2.75 1.62 
y-Ca2SiO4 -9.15 -0.84 -0.08 
Mg2SiO4 0.67 1.50 -0.01 
Zn2SiO4 0.38 -1.94 0.66 
Ca3A12Si3O12 -2.25 N.P. -12.63 
2(Ca3MgSi2O8) -1.53 +3.24 -4.54 

Metasilicates 
CaSiO3 -0.97 -0.83 0.22 
CaSiO3 (pseudo) 0.25 0.44 1.08 
CaAlAlSiO6 2.36 0.18 3.04 
CaMgSi206 0.54 -0.80 -1.50 
MgSiO3 0.25 0.33 -0.10 
NaAlSi206 1.35 0.72 -2.94 

Feldspars and feldspathoids 
KAlSi308 (microcline) 0.03 -3.27 5.49 
KALSi308 (sanidine) 0.11 -3.37 5.52 
NaAlSi308 (low albite) 1.30 -1.11 5.48 
NaAlSi308 (high albite) 1.15 -1.20 5.48 
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KALSi308 (sanidine) 0.11 -3.37 5.52 
NaAlSi308 (low albite) 1.30 -1.11 5.48 
NaAlSi308 (high albite) 1.15 -1.20 5.48 

pose for silicates of nontransition ele- 
ments. The entropy-volume relation (1) 
was found to be particularly good for sili- 
cates with spherical ions, a point that I 
emphasized. I did not consider the tran- 
sition elements because of a lack of data, 
although I did discuss the entropy of al- 
mandine on the basis of the data on 
Fe2SiO4 and Mn2SiO4. 

It is well known that for spherical ions 
there is a distinct correlation between 
mass and volume. The significant corre- 
lation found between the entropy and 
volume of the silicates indirectly attests 
to this fact. It was my hope that Cantor's 
(2) equations would provide significant 
improvement in the entropy estimates. 
Unfortunately, Table 1 shows that this is 
not true. Cantor's (2) calculated en- 
tropies of almandine and pyrope (69.93 
and 47.07 gibbs/mole, respectively) also 
do not differ significantly from mine 
(68.13 and 47.47, respectively). As I dis- 
cussed in (1), equation 2 was based on 
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Silicate Saexp 
- 

Sexp - Soxides (Cantor) 

Fe2SiO4 -0.78 -1.95 
Mn2SiO4 1.58 0.58 
Ca3Fe2Si3012 4.73 -0.06 
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only two entropy values and therefore 
should not generally be used without ad- 
ditional data. Table 2 shows that for sili- 
cates of transition metals the entropy es- 
timates of Cantor (2) are no better than 
those obtained by the oxide summation 
method. 
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The cover of the 9 April 1976 issue of 
Science (1) purports to show that the 
human visual system analyzes patterns 
into Fourier components rather than 
into local features. As such, the demon- 
stration is quite misleading since it can 
be understood on rather more simple 
grounds. There has, indeed, been rather 
substantial experimental evidence to 
suggest that the eye may behave in this 
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substantial experimental evidence to 
suggest that the eye may behave in this 

way, although the matter is still con- 
troversial. At issue is not whether a 
Fourier representation of visual space 
can be useful in studying visual phe- 
nomena (the answer is a clear yes), but 
whether signals moving in the optic 
nerve from retina to cortex are coded in 
terms of a Fourier analysis of a scene 
rather than in some more straightforward 
representation. 

207 

way, although the matter is still con- 
troversial. At issue is not whether a 
Fourier representation of visual space 
can be useful in studying visual phe- 
nomena (the answer is a clear yes), but 
whether signals moving in the optic 
nerve from retina to cortex are coded in 
terms of a Fourier analysis of a scene 
rather than in some more straightforward 
representation. 

207 


