
Metric of Color Borders 

Tansley and Boynton (1) demon- 
strated that the distinctness of the border 
between two colors, as judged by normal 

subjects, is about the same as that judged 
by tritanopes. Thus blue cones can make 

only a small contribution to this judg- 
ment, compared with green and red cones. 
This finding fits well with the relatively 
large Weber fraction and poor spatial 
acuity shown by the blue-cone mecha- 
nisms (2). 

The question considered here is 
whether the metric for such judgments is 
best viewed as two-dimensional (1) or 
one-dimensional. The importance of this 

question lies in the fact that a two-dimen- 
sional representation, if necessary, im- 

plies a qualitatively different form of 
neural processing than that of a one-di- 
mensional representation. Briefly, the 
case for a one-dimensional representa- 
tion is this: it proves possible to charac- 
terize each color by a single variable, so 
the locus of all colors must necessarily 
be a line in some dimensional space; only 
if similarities beyond a monotonic rela- 
tion are present will a representation 
beyond one dimension be required; a 
monotonic relation appears sufficient to 
characterize the data, and, on the basis 
of available evidence, better describes 
certain aspects of it than does the two- 
dimensional representation of Tansley 
and Boynton (1). 

After the blue cones are excluded, 
there are only two independent variables 
for each of the colors whose apposition 
forms the border, the photon catches of 
the green and red cones. The experimen- 
tal procedure imposed an additional con- 
straint, that each of the 36 colors used 
had, in effect, the same luminance (3). 

Thus, in terms of its role in contributing 
to the distinctness of a border, each col- 
or could be entirely characterized by a 

single variable, for example, the photon- 
catch rate of the green cones. 

Using a nonmetric multidimensional 
scaling program, Tansley and Boynton 
found that the colors could all be placed 
along or near a C-shaped line in two di- 
mensions (Fig. 1, inset) so that, in this 

plane, the rank order of distances be- 
tween the positions of any two colors 
was monotonic to the rank order of the 

perceived distinctness of the border be- 
tween them, as judged on an arbitrary 
scale. The relation between position on 
this line and cone stimulation is shown in 
Fig. 1. For each color the ordinate plots 
its position along the C-shaped line and 
the lower abscissa plots the fractional 
contribution of the green cones to its 
luminance, calculated from the dichro- 
matic confusion matrix (4). There is a 
monotonic relation between these vari- 
ables, as expected. 

Tansley and Boynton preferred the 
two-dimensional representation of their 
data to the one-dimensional representa- 
tion because ". .. it permitted an appre- 
ciably closer approximation to a propor- 
tional relation between distinctness rat- 
ings and distance and because both di- 
mensions were susceptible to plausible 
interpretation" [reference 6 in (1)] (5). 
Since nonmetric multidimensional scal- 
ing makes use only of the rank of the dis- 
tinctness judgments, but not of the val- 
ues along the distinctness scale, the re- 
sulting representations provide no direct 
information regarding the distinctness 
scale. Furthermore, due mainly to exper- 
imental error, data from one-dimensional 

variables often show a good solution in 
two dimensions, usually in the form of a 
C-shaped line (6). Thus such shapes in 
themselves are not evidence, per se, that 
the metric representation need be more 
than one-dimensional. However, a sec- 
ond dimension would be unavoidable if 
the C-shaped curve of Fig. 1 correctly 
represents the border judgments. This is 
because it shows the border between col- 
ors 1 and 36 to be less distinct than be- 
tween other combinations (for example, 
those diametrically opposite, such as 5 
and 31). On the other hand, in a one- 
dimensional representation, such as the 
ordinate or abscissa of Fig. 1, colors 1 and 
36 would necessarily be farthest apart and 
their border the most distinct. Colors I 
and 36 differ by the greatest amount, both 
in degree of stimulation of the green cones 
and in degree of stimulation of the red 
cones (Fig. 1). If the border between 
them is actually less distinct than be- 
tween, for instance, colors 5 and 31, then 
not only is a two-dimensional represen- 
tation unavoidable, but there must exist 
some form of interaction between the 
signals of different cone types that has 
not previously been described (that is, 
some form of cancellation). 

The distinctness judgments for the 
various pairs of colors are not included 
in (1), but similar data in a related study 
by Ward and Boynton (7) suggest that 
the border between colors such as 1 and 
36 is more distinct than that between oth- 
er pairs, as required if there is only one 
dimension involved. 

In summary, Tansley and Boynton (1) 
demonstrated that blue cones make little 
if any contribution to the distinctness of 
color borders. This constraint, that of 
constant luminance, and that of tri- 
chromacy imply that the colors can be 
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Fig. 1. Results from multi- 
dimensional scaling ofjudged 
differences among all 'possi- 
ble pairs of 36 nonspectral 
colors (I). The C-shaped line 
in the inset is redrawn from 
figure 1 in (1). The ordinate 
of the graph plots position 
along this line. Symbols off 
the line were assumed to lie 
on it at the nearest point as 
determined by constructing a 
perpendicular. The abscissa 
is described in the text; the 
sigmoidal curve through the 
data points happens to be 
symmetric about its center 
(*). 
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placed along a line. Available evidence 
suggests that a one-dimensional repre- 
sentation of this line is sufficient to ade- 
quately characterize the distinctness of 
color borders and that the complexities 
resulting from the introduction of a sec- 
ond dimension may be unnecessary. 
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2 August 1976 

After reviewing a draft of what even- 
tually became our Science report (1), 
Roger Shepard of Stanford University (a 
pioneer in the development of multi- 
dimensional scaling methods) remarked 
that our work provided the first instance 
known to him where the use of such pro- 
cedures has led to a physiological hy- 
pothesis. But he was not all smiles. He 
cautioned us that a helix is often a degen- 
erate form of what is really a one-dimen- 
sional solution, as is a C shape in two di- 
mensions. We should beware, he said, of 
interpreting our results in more dimen- 
sions that those for which a plausible in- 
terpretation can be given. 

At the time, the helical form of the so- 
lution in three dimensions excited us far 
too much (perhaps we thought that the 
"single helix" would make us famous). 
We calmed down to two dimensions, but 
we should have gone all the way. For 
Rodieck is quite correct in pointing out 
that the choice of the number of dimen- 
sions has significant implications regard- 
ing the possible neural interactions un- 
derlying chromatic border perception. 
Our further thinking about the matter has 
been entirely consistent with his con- 
clusion that a one-dimensional metric is 
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Fig. 1. Border distinctness as a function of ab- 
solute difference between tritanopic purity 
values of pairs of lights. 

sufficient to account for chromatic bor- 
der distinctness judgments in a way that 
makes sense physiologically. 

Valberg and Tansley (2) have de- 
scribed a one-dimensional function that 
reflects the activity of a spectrally oppo- 
nent mechanism which can account for 
chromatic border distinctness ratings. 
Assuming that the mechanism respon- 
sible for the perception of chromatic bor- 
ders in normal observers should be simi- 
lar to the one that controls color vision 
more generally for the tritanope, a "trit- 
anopic purity difference function" was 
calculated. For each of two lights that to- 
gether make up a bipartite field in which 
a chromatic border is seen, tritanopic pu- 
rity, Pt, is given by 

Pt = k, (R - G)/(R + G) 

R and G are tristimulus values for a pair 
of fundamental response functions, r and 
g, whose sensitivities (3) have been nor- 
malized to unity at 570 nm, which is 
where the tritanope sees a neutral point 
in the spectrum (4). A consequence of 
this choice of normalizing wavelength is 
that the function relating chromatic bor- 
der distinctness to the relative stimula- 
tion of R and G cones becomes symmet- 
rical, as Rodieck observed, but did not 
attempt to explain, in his replot of our 
distinctness scaling results. 

Each spectral distribution has a partic- 
ular tritanopic purity value associated 
with it. We have hypothesized that the 
visual distinctness of a given chromatic 
border is related to the absolute dif- 
ference, Aptl, between the trianopic pu- 

rity values calculated for each of the two 
lights. 

Subjective border distinctness ratings, 
D,, could be predicted by an equation of 
the form 

D, = k, loglApt/Ap tI 
where ApP is a threshold value and k2 is 
a scaling constant. Figure 1 shows a 
sample of data taken from an unpub- 
lished chromatic border distinctness ex- 
periment, similar to the one by Ward and 
Boynton (5), in which spectral lights and 
distinctness ratings were used. More 
replications and fewer wavelengths were 
used in an effort to obtain less noisy 
data. 

Instead of locating the position of each 
stimulus in a conventional chromaticity 
diagram, as had been done in a previous 
analysis (1), we have calculated the ab- 
solute value of the tritanopic purity dif- 
ference, lAptl, for each pair of spectral 
lights used to generate a chromatic bor- 
der. We compared these tritanopic pu- 
rity differences with the visual distinct- 
ness ratings that three observers, on 
average, gave to the borders formed by 
the apposition of pairs of these spectral 
lights. 

In Fig. 1, each open circle represents 
the average value of lAPt| for various 
pairs of lights that give rise to a chromat- 
ic border of a given distinctness (with- 
in + 0.1 distinctness unit). A monoton- 
ic transformation of a one-dimensional 
metric (the logarithm of the tritanopic 
purity difference) fits closely with the 
collected distinctness data, as suggested 
from the earlier multidimensional scaling 
results to which Rodieck refers (6). 
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