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or Tatisaurus, because of their extremely uncer- 
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Lunar Surface Chemistry: A New Imaging Technique 

Abstract. Detailed chemical maps of the lunar surface have been constructed by 
applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray 
fluorescence data. The data quality improvement is amply demonstrated by (i) modes 
in the frequency distribution, representing highland and mare soil suites, which are 
not evident before data filtering and (ii) numerous examples of chemical variations 
which are correlated with small-scale (about 15 kilometer) lunar topographic fea- 
tures. 
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fluorescence data. The data quality improvement is amply demonstrated by (i) modes 
in the frequency distribution, representing highland and mare soil suites, which are 
not evident before data filtering and (ii) numerous examples of chemical variations 
which are correlated with small-scale (about 15 kilometer) lunar topographic fea- 
tures. 

The Apollo 15 and Apollo 16 missions 
to the moon carried an x-ray fluores- 
cence spectrometer, which measured 
from orbit the aluminum, silicon, and 
magnesium concentrations in surface 
soils, using the x-ray emission from the 
sun as the exciting source (1, 2). The pri- 
mary objective of the experiment was to 

map the geochemistry of the areas over- 
flown in terms of these major rock-form- 
ing elements. Knowledge of the compo- 
sition and distribution of chemical 

components is fundamental to a re- 
construction of the evolution of the 
moon, including its origin, accretion, 
chemical differentiation into rock types, 
and physical processes which have mod- 
ified the lunar crust. 

The elemental meastlrements are ex- 
pressed as intensity ratios (Al/Si, Mg/Si, 
and Mg/Al) in order to minimize non- 
chemical effects on the measured signal, 
such as those caused by differences in 
sun-moon-spacecraft geometry, shifts in 
the solar spectrum, and particle size 
variations on the lunar surface. 

The important relationship between 
orbital x-ray intensity ratios and 
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"ground truth" (returned sample) analy- 
ses is based on the fact that the charac- 
teristic secondary x-ray intensity is di- 

rectly related to the element's concentra- 
tion in surface soils. The conversion 
factors for intensity to concentration ra- 
tios have been determined by correlating 
orbital data with chemical analyses of re- 
turned soils from the Apollo and Soviet 
Luna missions. This critical link is the 
basis for extending detailed chemical in- 
formation from a few specific landing 
sites to broad areas of the moon tra- 
versed by the Apollo 15 and Apollo 16 

spacecrafts. 
A new technique has recently been de- 

veloped to convert the digital informa- 
tion from Apollo orbital x-ray data to a 
color image of chemical variations on the 
lunar surface. The image shown in Fig. 1 
is the first detailed color representation 
of chemical variations constructed en- 

Fig. 1. Map displaying chemical variations 
across the lunar surface based on data from 
the Apollo 15 and Apollo 16 orbital x-ray fluo- 
rescence experiments. The colors represent 
different values of Al/Si concentration ratios. 
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tirely from 9000 Al/Si data points from 
the Apollo x-ray data. The application of 
this technique to x-ray data serves as a 
prototype for standardizing numerous lu- 
nar geochemical and geophysical data 
sets for correlation purposes. 

The spatial resolution of the Al/Si data 
shown on this image has been improved 
by more than a factor of 40 over that of a 
previous color map (3) produced by av- 
eraging the data within large topographic 
regions. The image displays a surprising 
amount of chemical detail, which can be 
correlated with lunar topographic fea- 
tures with dimensions on the order of 15 
km. Mare material and highland material 
can be clearly distinguished, yet each re- 
gime shows a range of chemical compo- 
sitions. Small lunar features such as 
flooded craters, ejecta blankets, and 
remnants of multiple ring systems con- 
centric to basins can be identified on the 
basis of chemistry alone. 

Integration of these numerous in- 
tensity ratios into a detailed geochemical 
map has been successful because of the 
data reduction methods and much im- 
proved array processing techniques. 
Preparation of the data base before array 
processing involved three steps. (i) To 
maintain consistency in mapping the 
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geographic location and areal extent of 
chemical changes measured, values were 
excluded if the spacecraft attitude 
caused the center of the field of view to 
veer more than 10? from the subspace- 
craft point. (ii) The mean level of Al/Si 
values for each orbit was adjusted to 
compensate for interorbit variations due 
to solar spectral changes during the 2- 
hour time lapse between orbits. It has 
been established that a more energetic 
solar spectrum causes enhanced excita- 
tion of the Si radiation relative to that of 
Al (1). These adjustments, involving fac- 
tors of about 7 percent, did not distort 
ratio variations along the individual or- 
bits and maintained the mean intensity 
ratio for the mission as a whole. (iii) 
From an analysis of more than 750 data 
points within the region of mission over- 
lap, a factor of 0.92 was determined for 
the normalization of the Apollo 16 data 
to the Apollo 15 data in order to com- 
pensate for the slightly different solar 
conditions for the missions. 

The versatile array processing tech- 
niques developed by the U.S. Geological 
Survey (USGS) in Flagstaff, Arizona, 
are especially suitable for Al/Si data. Be- 
cause of the unique character of the 
USGS system, x-ray image processing, 
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Fig. 2. Frequency dis- 
tributions for Al/Si 
measurements before 
and after the weighted 
filtering procedure. 
Horizontal bars show 
Al/Si ranges based on 
chemical analyses of 
soils from all Apollo 
(A) and Luna (L) mis- 
sions. 

which requires arithmetic precision, 
could be done in 32-bit floating-point 
arithmetic. Most important, the imaging 
process is designed to extract chemical 
detail which is concealed by the follow- 
ing characteristics of the x-ray data 
points. (i) Intensity measurements, re- 
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indication of the relative amounts of the 
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nar surface as a whole. A range of Al/Si 
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in previous analyses (1-4). However, 
this bimodal distribution is the first clear 
demonstration that orbital x-ray data can 
discriminate between the two most com- 
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mon soil suites, mare and highland, 
known to exist on the moon. 

One important aspect of this x-ray fre- 
quency distribution is that the chemistry 
of returned samples may be placed in the 
context of the broader orbital coverage 
of the lunar surface. The ranges of Al/Si 
concentration ratios based on chemical 
analyses of soils from all Apollo and Lu- 
na missions are indicated by horizontal 
bars in Fig. 2. The frequency of occur- 
rence for the soil ranges shown indicates 
the degree to which that material is rep- 
resentative of the areas overflown by the 
Apollo spacecrafts. 

It is of interest to note that within the 
quality of the measurements there ap- 
pear to be compositional continua about 
both highland and mare modes. There 
does not appear to be any significant 
amount of material within the mapped 
area having Al/Si values lower than 
those of the Apollo 17 black and orange 
soils. 

The following geochemical features 
seen on the image are useful clues to lu- 
nar evolutionary processes. 

1) The chemical composition of the 
maria becomes more aluminous from 
west to east. 

2) Nonmare areas become increas- 
ingly Al-rich from west to east, with the 
exception of the Descartes area (17?E; 
8?S), which has Al/Si values as high as 
those of highland areas east of 40?E. 

3) Considerable variation in Al/Si val- 
ues within highland areas demonstrates 
that the lunar crust is not homogeneous. 

4) It is apparent from variations in Al/ 
Si that the Smythii basin (80?E to 90?E; 
5?S to 5?N) is only partially flooded with 
basalt. 

5) A concentric pattern of Al/Si varia- 
tions around the Crisium basin (50?E to 
65?E; 10?N to 20?N) suggests a chemical 
correlation with the topographic expres- 
sion of a multiple ring system. This pat- 
tern may represent disruption of crustal 
stratigraphy or mare basalt flooding in 
the topographic lows between the rings. 
A more detailed analysis is required to 
resolve this question. 

6) Low Al/Si values immediately to 
the west of and within the Firmicus cra- 
ter (63?E; 8?N) and within the Miraldi 
crater (35?E; 19?N) support photogeolog- 
ic evidence that mare basalts have 
flooded the floors of these craters. Iden- 
tification of these basalt-filled highland 
craters, which have distinct Al/Si signa- 
tures, provides information about the 
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7) The postmare crater, Langrenus 
(61?E; 8?S), exhibits a traceable high-Al/ 
Si ejecta blanket extending west into 
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Mare Fecunditatis. This ejecta is detect- 
able from x-ray data because the high- 
land-type material displaced contrasts 
chemically with the adjacent mare sur- 
face. The extent of primary ejecta in pro- 
portion to the crater size is significant for 
studies of crater mechanics and for vol- 
ume estimates of material excavated by 
meteorite impact. 

8) The craters Capella (35?E; 7.5?S), 
Apollonius A (57?E; 5?N), and Taruntius 
(46.5?E; 5.5?N) have higher Al/Si values 
than the adjacent intermare areas, sug- 
gesting that the impacts exposed a lower 
stratigraphic horizon of higher Al/Si ma- 
terial. 

9) The postmare craters Plinius (24?E; 
15.5?N) and Ross (22?E; 12?N) appear to 
have penetrated thin mare basalts and 
excavated material from the more alu- 
minous basin floor zone. The nature of 
subsurface material may be observed 
through the "window" of impact cra- 
ters. The depths of craters which sample 
basin floor material help to define sub- 
mare basin morphology and constrain es- 
timates of the maximum depth of mare 
basalt flows. 

10) A streak of lower Al/Si values 
crosses both Mare Fecunditatis and 
highland areas from southwest to north- 
east (intersecting coordinates 59?E; 3?N 
and 54?E; 2?S). This streak is parallel to 
and only slightly offset from a mapped 
ray radial to the Tycho event. 

Finally, it is worth noting that the area 
mapped to date from x-ray data consti- 
tutes less than 10 percent of the lunar 
surface. For complete interpretation of 
these data and for full exploitation of the 
Apollo and Luna returned lunar sample 
information, it is of utmost importance 
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The law of baryon conservation, first 
proposed by Stfickelberg (1) and by Wig- 
ner (2), has recently received renewed 
attention because of the prediction by 
several unified gauge theories (3) of the 
weak, electromagnetic, and strong inter- 
actions that this law may not be exact 
(4). From an experimental point of view, 
the most sensitive tests of baryon con- 
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that x-ray data be obtained over the 
whole moon so that the full range of sur- 
face soil compositions may be character- 
ized and mapped in detail. The opportu- 
nity to accomplish this important goal is 
readily available in the projected Lunar 
Polar Orbiter mission, with its global 
mapping capability. 
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servation are provided by searches for 
decays of nucleons (5), since such 
decays, at least into known particles, 
cannot occur without violating the law of 
baryon conservation. Estimates of the 
nucleon lifetime provided by the various 
unified gauge theories (3) range from 1027 

to 1035 years. 
A limit of 2 x 1030 years has been 
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Nucleon Stability: A Geochemical Test 

Independent of Decay Mode 

Abstract. By analyzing published geochemical data on xenon isotopes measured in 
a 2.46 x 109-year-old telluride ore, a lower limit of 1.6 x 1025 years has been ob- 
tained for the mean lifetime of the nucleons in the tellurium-130 nucleus. This result 
is insensitive to the particular mode by which the nucleons decay and therefore pro- 
vides a rigorous limit on possible baryon number nonconservation. The new limit is 
about two orders of magnitude better than the previous rigorous limit on nucleon 
stability. 
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