
duce functional deficits. Our findings in- 
dicate, however, that the fetal organism 
is particularly sensitive to chronic CO 
exposure and may be impaired at levels 
of exposure similar to those found 
among cigarette smokers. Cigarette 
smoke contains roughly 3 to 5 percent 
CO (20) and inhalation of tobacco smoke 
is the major source of HbCO in the gen- 
eral population. Cigarette smokers have 
an average HbCO concentration of ap- 
proximately 5 percent (15), but the level 
ranges from about 1 to 16 percent in indi- 
viduals, depending on occupation, smok- 
ing habits (frequency and inhalation pat- 
terns), and ambient CO concentrations 
(15). In nonsmokers HbCO levels aver- 
age approximately 0.5 percent and rarely 
exceed 2 percent (15). Carboxyhemoglo- 
bin levels also tend to be somewhat ele- 
vated during pregnancy, reflecting en- 
hanced endogenous CO production (4). 

Our results suggest that indices of ma- 
ternal cigarette smoking such as en- 
hanced neonatal mortality and reduced 
birth weight reflect only the most readily 
measurable effects of this toxin; the po- 
tentially more serious consequences of 
altered central nervous system function 
and biochemistry early in life or, per- 
haps, permanently are only now begin- 
ning to be discovered by use of animal 
models. 
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One of the goals of neuroethology (I) 
is to determine the physiological sub- 
strates for behavior. Within the past dec- 
ade, a number of studies have provided 
an excellent foundation for this emerging 
field (1-4). Most of these studies have 
been of invertebrates, primarily mol- 
lusks and arthropods because these ani- 
mals have relatively simple nervous sys- 
tems and relatively simple behaviors. In 
general, the approach has been to take 
one or a few simple behavioral acts, de- 
termine the neural structures controlling 
the behaviors, and then determine the in- 
teractions among the elements involved. 
However, these studies have generally 
focused on the substrates of a simple be- 
havior (3) or the interaction of several 
behaviors (4) in adult animals. Other in- 
vestigators have pursued the changes in 
a single behavior during growth and de- 
velopment (2). However, these studies 
have rarely been concerned with corre- 
lating both neural and morphological 
substrates with changes in behavior. We 
have examined both physiological char- 
acteristics and allometric relationships 
among various components of two in- 
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compatible behaviors of the lobster-es- 
cape and defense-from the larval stages 
to sexual maturity. During this period of 
growth, the components of these behav- 
iors develop and differentiate consid- 
erably: the animal clearly favors escape 
early in its life cycle but defensive be- 
havior in the later stages. Furthermore, 
certain physical characteristics, which 
determine the efficacy of these behav- 
iors, exhibit transitional stages that oc- 
cur during the same stage of devel- 
opment. 

The primary flight response of the lob- 
ster is the well-known tail flip escape re- 
sponse common to the reptantian crusta- 
ceans (5, 6). The tail flip results from the 
contraction of the large abdominal flexor 
muscles and serves to propel the animal 
backwards. The behavior is mediated by 
two pairs of giant interneurons, the me- 
dial giants (MG) and the lateral giants 
(LG), as well as by nongiant inter- 
neurons (7-11). We have studied two as- 
pects of escape behavior during growth 
of lobsters. We calculated (i) the time for 
the action potential in the medial giant 
axon to propagate the length of the ani- 
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Developmental Neuroethology: Changes in Escape 

and Defensive Behavior During Growth of the Lobster 

Abstract. The changes in relative efficacy of two incompatible behaviors was in- 
vestigated during growth of the lobster, Homarus americanus. In larval and early 
juvenile stages, physiological and morphological factors favor use of the escape re- 
sponse over defensive behavior. In large animals, defensive behavior is preferred 
almost exclusively to escape behavior unless the claws are lost. The interaction of 
escape and defensive behavior is modified by neural and morphological factors, 
which are dependent on the stage in the life cycle of the organism. 
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mal and (ii) the relative size of the abdo- 
men as a function of the total size of the 
animal. 

The primary fighting response of the 
lobster employs the chelipeds (claws). 
The adult animal has dimorphic claws, a 
cutter and a crusher (12) (Fig. 1). The 
former has a closer (adductor) muscle, 
which contains about 60 to 70 percent 
fast muscle fibers in the adult (13), and is 
capable of closing very rapidly (14, 15), 
fast enough, in fact, to capture fish 
(Fundulus) (16). The crusher claw is 
composed of slow muscle fibers only 
(13), but it is able to close with sufficient 
force to break the shells of large mussels 
(Mytilus). Thus, these claws serve dif- 
ferent functions in both feeding and fight- 
ing (17) behaviors. However, in larval 
and early juvenile lobsters, the claws are 
symmetrical and relatively small. We 
have studied two aspects of the use of 
the claws during the animals' growth: (i) 
the relative size of the claw as compared 
to the total size of the animal and (ii) the 
rate of differentiation of the claw from 
the symmetrical to the asymmetrical 
condition. 

Larval lobsters were obtained from 
the State Lobster Hatchery, Martha's 
Vineyard, Massachusetts, and were 
reared as previously described (18). Con- 
duction velocities were measured in the 
MG and LG axons in the anterior ab- 
dominal region (19, 20). During growth 
of the animal, the diameter of the MG ax- 
on increased from about 20 /um in the 
fourth stage (11 mm total length) to about 
100 to 120 /m in a 16- to 18-cm animal. 
The LG axon diameter is less than 10 /am 
in the fourth stage (20). Although it is not 
"giant," it also grows substantially dur- 
ing the same period, reaching a diameter 
of 90 to 110 gm in a 16- to 18-cm animal. 
Most of the growth of the MG and LG 
has been achieved when the animal is 6 
to 7 cm in length. At this time, the MG is 
80 to 90 /am in diameter. Since con- 
duction velocity increases as the 0.5 
power of the diameter, the further in- 
crease in the MG diameter does not sub- 
stantially increase the conduction veloci- 
ty. 

The early hypertrophy of the giant ax- 
ons takes place rapidly enough to com- 
pensate for increases in the length of the 
animal (Fig. 2A). Initially, the con- 
duction time from the brain to the telson 
is about 4 msec; it remains constant until 
the animal reaches about 5 cm in length. 
At this point, conduction time gradually 
increases, in part because the sub- 
sequent increase in MG axon diameter is 
only a small percentage of the total diam- 
eter and thus produces only a small in- 
crease in conduction velocity. In addi- 
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Fig. 1. Lobsters at three stages of growth. The positive allometric growth rate for the claws and 
the negative allometric growth rate for the abdomen are clearly demonstrated. Approximate 
weight, total length, and age are: (A) 0.2 g, 14 mm, 14 days (fourth stage); (B) 15 g, 65 mm, 14 
months; (C) 8.8 kg, 49.5 cm; the age of this animal was estimated to be between 20 and 30 years. 
Claws of the postlarval animal (A) are identical; the crusher claw is on the right in the 15-g 
animal and the left on the 8.8-kg animal. 

tion, this small increase in velocity is off- 
set by the increase in the length of the 
animal, which results in a striking in- 
crease in conduction time. 

Another observation that reflects the 
efficacy of the tail flip as an escape mech- 
anism is the allometric relationship of ab- 
domen size to animal size. In larval and 
early postlarval animals, the abdomen 
forms a substantial portion of total ani- 
mal weight (Fig. 2B). This ratio remains 
nearly constant until the animal becomes 
40 to 60 mm long; thereafter, the tail in- 
creases in size more slowly than the rest 
of the animal. In large animals it is less 
than 15 percent of the total weight. A 
similar result obtains when abdominal 
length is compared to carapace length 
(Fig. 2C) (21). 

When similar data are collected for the 
growth of the claws, the opposite picture 
emerges. In larval and early postlarval 
animals, claw weight and length are a 
small fraction of total weight and cara- 
pace length, respectively (Fig. 2, B and 
C). During subsequent growth, claw 
length increases disproportionately fast- 
er than carapace length until the animal 
reaches about 5 cm in total length. At 
this time the length of the propodite 
reaches a ratio of just under 1.4 times the 
carapace length. The maximum ratio of 
just more than 1.4 is achieved during the 
next 50 mm of growth. Similarly, claw 
weight as a percentage of total weight in- 
creases rapidly from the larval stages un- 
til the animal is about 50 mm in total 
length. Thereafter, claw weight contin- 
ues to exhibit a positive allometric rela- 
tionship to total weight (22). 

The implications of these findings in 

terms of escape and defensive behavior 
are clear and lead to an obvious hypothe- 
sis regarding use of these incompatible 
behaviors. In order to survive, the ani- 
mal must either be able to escape from a 
potential predator or be able to defend 
itself. In the early growth stages, the lob- 
ster is small and defenseless. At this pe- 
riod of its life, the primary strategy is one 
of escape. This necessity is well served 
by the low threshold and short latency 
for the tail flip as well as by the large size 
of the abdominal musculature relative to 
the size of the animal. Other studies have 
reported that small crayfish have a much 
lower threshold for escape behavior (tail 
flips) than larger ones (8, 11). We have 
observed similar behavior in the lobster. 
When a rapidly moving visual stimulus is 
presented to a juvenile lobster, it in- 
variably retreats. Juvenile animals (31 to 
52 mm long) respond with a tail flip 98 
percent of the time, but adult animals (17 
to 25 cm long) respond with a tail flip on- 
ly 18 percent of the time. Clawless adults 
respond with a tail flip 84 percent of the 
time (23). 

As the animal grows, the escape be- 
havior becomes replaced by a defensive 
strategy. At this time the tail flip be- 
comes less effective as a means of escape 
for two major reasons. (i) Conduction 
time for an MG impulse to travel from 
the brain to the sixth abdominal ganglion 
increases dramatically and results, in 
turn, in an increased latency for the es- 
cape response. (ii) The relative length of 
the abdomen decreases from about twice 
the carapace length in the first larval 
stage to about 1.4 times the carapace 
length in the adult. Thus, the absolute 
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Fig. 2. Changes during growth of the lobster. 
(A) Conduction time (in milliseconds) for a 
spike in the medial giant axon traveling from 
the brain to the sixth abdominal ganglion. The 
conduction velocity was measured in the ante- 
rior abdominal segments (20). (B) Relative 
change in weight is given for the abdomen and 
the claws. The latter include both claws, sev- 
ered at the autotomy plane; body weight is the 
total weight of the intact animal. (C) Relative 
change in claw (propodite) length or abdomen 
length as compared to carapace length (from 
the eye to the posterior end of the thorax) dur- 
ing growth of the lobster. The data given for 
the claw is for the cutter. Data in (A) are from 
animals in the first postlarval (fourth) stage 
and larger; (B) and (C) include the three larval 
stages. The semilog plot was used to com- 
press the abscissa to accommodate the large 
range in animal size. Each point is an average 
from at least 5 animals. 

force developed by the flexing abdomen 

may increase during growth, but the ra- 
tio of force to animal mass decreases, 
and the abdomen is less able to impel the 
animal away from danger. 

Conversely, the claw increases its size 
in a positive allometric fashion while dif- 

ferentiating into the specialized cutter 
and crusher claws. With larger, differ- 
entiated claws, the animal is in a posi- 
tion to readily defend itself. Now when 
the animal is attacked with a probe, it 
seldom responds with a tail flip regard- 
less of the viciousness of the attack. 

Rather, threatening evokes the defensive 
behavior of raised, open claws. Indeed, 
if the animal is actually jabbed, it will of- 
ten attempt to grab the probe with both 
claws. 

This preference for defensive behavior 
in older animals is not simply due to a 
slow disappearance of the tail flip with 

age. We have observed that when the 
claws of a 3600-g animal are removed, 
the animal immediately escapes from a 
net by using the tail flip several times in 

quick succession. Thus, while the neural 
circuit for the reflex is intact and func- 

tional, it is simply not an efficacious re- 

sponse for a large, clawed animal. Simi- 
lar results have been reported in crayfish 
(24). 

It would be of interest to compare 
some of the same measurements in other 

reptantians that either lack claws (for ex- 

ample, Panulirus sp.) or have relatively 
smaller claws (for example, crayfish). 
Preliminary experiments on the latter 

suggest that crayfish (Procambarus 
acutus) differ from lobsters in their be- 
havioral strategy. Their claw weight is 
about 10 percent of total weight even in 

sexually mature males (50 mm long). (In 
lobsters of comparable size, which are 
not sexually mature, the claws are 27 

percent of the total weight.) Another in- 
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teresting comparison between these ani- 
mals is the relative size of the giant ax- 
ons. Crayfish giant axons are 16 percent 
of the total cross-sectional area of the 
nerve cord in a 7-cm animal. In a smaller 
lobster, 23 mm in length, the comparable 
figure is 11 percent, and in a 7-cm lobster 
it is only 8 percent (25). 

These results demonstrate that physi- 
cal factors place constraints on particu- 
lar behaviors. Since many structures of 
animals grow at different rates, their allo- 
metric relationships can provide insight 
into their relative importance in the be- 
havioral strategies of an animal. With 
parallel physiological studies, one can 
further appreciate the particular function 
and importance of these structures. 
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utes between trials. 
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The heads of myosin molecules play a 
major role in producing the contractile 
force of muscle. They are arranged in a 
regular manner in the vicinity of the 
thick filaments in living resting muscle 
(1), and, when the muscle is activated, 
move promptly to the vicinity of the thin 
filaments (2) to undergo tension-generat- 
ing reaction with actin. After con- 
traction, the myosin heads return to their 
resting positions, but the time course of 
the return has not been well defined; 
Huxley (3) has concluded, from his ob- 
servation on the intensities of the axial x- 
ray reflections of muscle after a short tet- 
anus, that the return takes at least sever- 
al seconds; whereas Podolsky et al. (4) 
have concluded from their observation 
on the intensities of the equatorial x-ray 
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reflections that the return is almost com- 
pleted within 100 msec after the fall of 
contractile tension. In a further study on 
the time-dependent intensity changes of 
the equatorial reflections, we obtained a 
result suggesting that the return occurs 
in two stages; a prompt change in the 
equatorial intensities on cessation of te- 
tanic stimuli is followed by a gradual 
change lasting several seconds. 

A sartorius muscle, together with the 
pubic bone, was isolated from the bull- 
frog Rana catesbeiana. The muscle was 
held isometrically in a specimen cham- 
ber by clamping the pubic bone at one 
end and connecting the tendon to a force 
transducer (Shinkoh, type UL) at the 
other end. The chamber had Mylar win- 
dows for passing x-rays through the 
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middle of the muscle and was filled with 
oxygenated Ringer solution (4?C), which 
was continuously renewed with a per- 
fusion pump. At the beginning of each 
experiment the sarcomere length of the 
muscle was adjusted to 2.2 g/m by mov- 
ing the force transducer; the sarcomere 
length was measured by passing a helium 
gas laser (X = 0.6328 ,im) through the 
same part of the muscle as to be exposed 
to x-rays, and observing the optical dif- 
fraction pattern. The muscle was stimu- 
lated tetanically, for 1 second at a time, 
with supramaximal electrical pulses (20 
hertz) given through a pair of electrodes 
placed parallel to the muscle axis. 

The equatorial x-ray diffraction pat- 
tern of the muscle was recorded by a po- 
sition-sensitive counter of the type de- 
veloped by Allemand and Thomas (5). 
The outputs of the counter were fed into 
a data collection system that was syn- 
chronized with the tetanus (see below). 
The recorded pattern (that is, the in- 
tensity distribution of the x-rays scat- 
tered along the equator) showed the 1,0 
and the 1,1 reflections arising from the 
hexagonal array of the myofilaments. 
The intensities of these reflections were 
obtained by measuring the area under 
the peaks on the intensity distribution; 
the background level under each peak 
was drawn in by eye. This background 
level, relative to the peak height of each 
reflection, was of approximately the 
same magnitude as that of the densi- 
tometer traces of the equatorial patterns 
recorded on x-ray films. 
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a) Fig. 1. Time-dependent changes in the contractile tension and the in- 
f t + tensity ratio of the 1,0 and 1,1 equatorial reflections. (a) A typical 

record of the tetanic tension averaged for 20 contractions. A frog sar- 
?0 -torius muscle (cross-sectional area, 0.13 cm2) was stimulated with 

t I_ J _I _ I I I I I electrical pulses (20 hertz) for 1 second starting at time zero. (b) The 
0 2 4 6 8 10 12 14 16 intensity ratio of the 1,0 and 1,1 reflections (mean + standard error of 

Time (sec) the mean, N = 7). The x-ray generator was a rotating anode type 
(Rigaku FR) with a line focus (1 by 0.1 mm) on a copper target. This 

was operated at 40 kv with a tube current of 80 ma. A low-angle camera of Huxley-Holmes type (1) was used with a specimen-to-counter distance of 
40 cm. (c) A semilogarithmic plot of the deviation of the intensity ratio from its resting value against time after the cessation of stimuli. The solid line 
is the regression line for the points after the fall of tension. 
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Return of Myosin Heads to Thick Filaments 

After Muscle Contraction 

Abstract. The heads of myosin molecules, which move to the vicinity of the thin 
filaments to react with actin during muscle contraction, return to the thick filaments 
after contraction. The return occurs in two stages; a rapid return of the majority of 
the myosin heads is followed by a slow return of the rest. 
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