
radation, and damage to vegetation. 
These effects would be observed not on- 
ly at the time of release of DEHA into 
the atmosphere but also at least 6 hours 
downwind from the release sites. In the 
same way, use of DEHA at 0.5 ppm 
would greatly exacerbate smog symp- 
toms at locations from 1 hour to at least 5 
hours downwind (see Fig. 2). Further- 
more, DEHA's odor threshold level (0.5 
ppm) prohibits its introduction into pol- 
luted atmospheres at concentrations of 
0.5 ppm or more (we do not consider 
here the possible toxicity of DEHA and 
its reaction products). 

Our results confirm that DEHA, at 
sufficiently high concentrations, acts as 
an inhibitor of photochemical smog. 
However, this result cannot be extrapo- 
lated to conditions prevailing in ambient 
polluted atmospheres. Clearly, experi- 
mental validation of proposed tech- 
niques for the control of photochemical 
smog by chemical additives must be con- 
ducted at ambient pollutant levels. 
JAMES N. PITTS, JR., JEROME P. SMITH 
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also investigated. Since DEHA was added to the 
same compartments in all experiments except 
experiment 2, one may argue that the observed 
increase in 03, PAN, and bseat with the addition 
of DEHA may be due in part to contamination 
from earlier experiments. We tested this possi- 
bility in experiment 2, where DEHA was added 
to the compartment usually used for ambient air 
alone, and vice versa. The results of this experi- 
ment were in no way different from the results of 
the other experiments. 

16. These experiments were conducted in another 
chamber with Teflon and plexiglass walls hous- 
ing a Fourier-transform infrared spectrophotom- 
eter with a base path of 22 m and a total optical 
path of 1.1 km. The DEHA concentration was 
measured on the basis of its known absorptivity 
at 931 cm-1. 
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High-Frequency Pn Phases Observed in the Pacific 

at Great Distances 

Abstract. Earlier observations of a seismic waveguide in the northwestern Pacific 
with a velocity of 8.3 kilometers per second to distances of approximately 30? are 
complemented by suggestions of a possible waveguide with a velocity of 7.8 kilome- 
ters per second to distances well in excess of 30?. 
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The high-frequency Pn waveguide in 
the mantle underlying the northwestern 
Pacific is characterized by velocities of 
about 8.3 km/sec and frequencies as high 
as 6 hertz to distances of 30? (1). Wave- 
guides with similar velocities (8.1 to 8.3 
km/sec) have been found in other regions 
of the earth (2), with observations out to 
35.07? for continental travel paths (3) and 
to 37.84? for oceanic travel paths (4). Re- 
cently, however, Pn arrivals for dis- 
tances greater than 30? in both the North 
and northwestern Pacific were found (4) 
to have significantly lower apparent 
velocities (approximately 7.9 km/sec) 
than the Pn arrivals with velocities of 8.3 
km/sec or 8.1 to 8.3 km/sec. Suggested 
interpretations were that low signal-to- 
noise ratios prevented the observation of 
the actual first arrival corresponding to 
the 8.3-km/sec energy or that an addi- 
tional waveguide was present. The sec- 
ond interpretation implies that the slow- 
er waveguide, although masked by 
phases from the faster waveguide at dis- 
tances less than 30?, is actually more effi- 
cient, resulting in the observation of 7.9- 
km/sec arrivals at distances greater than 
30? and the corresponding absence of 
8.3-km/sec arrivals. 

The suggestion of a second waveguide 
prompted a reexamination of existing 
earthquake data (seismograms and hy- 
drophone recordings from Midway, 
Wake, and Hawaii; seismograms from 
Ponape and Easter islands) for travel 
paths in the Pacific. Thus far, a total of 
23 suspected waveguide phases have 
been found for travel paths generally in 
excess of 30? (5). Travel paths and a trav- 
el time curve for these phases are shown 
in Figs. 1 and 2, respectively. The travel 
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time curve [T = X/(7.76 + 0.18) - 15.7 
+ 11.7, where T is the observed travel 
time in seconds and X is the epicentral 
distance in kilometers] is based on all 
but two of the data points in Fig. 2; these 
data points (at distances of 33.88? and 
68.42?) represent poorly recorded phases 
at Easter Island. The travel time curve 
(Fig. 2) for Pn arrivals observed at dis- 
tances of less than 30? illustrates the dif- 
ferences between the curves for the 8.3- 
and 7.8-km/sec phases. Sample seismo- 
grams and hydrophone power level re- 
cordings are shown in Fig 3. [The gen- 
erally higher apparent velocities (that is, 
X/T) of Fig. 3 relative to the value of 
7.76 km/sec determined from Fig. 2 are 
a result of the large negative intercept 
(- 15.7 seconds) of the travel time 
curve. This intercept may not be statis- 
tically significant because it has a large 
standard deviation (? 11.7 seconds).] 

Occasionally, depending on epicentral 
distances and focal depths, arrival times 
of the suspected waveguide phases cor- 
respond to the expected arrival times of 
either PP (a wave reflected once from 
the surface), PPP (a wave reflected twice 
from the surface), or PcP (a wave 
that bounces off the core) phases, or 
scattered precursors of these phases. 
These phases and their precursors are 
generally characterized by short wave- 
trains, consisting of only a few cycles 
with periods longer than their first-arriv- 
ing P phase, and the phases suspected 
here as being guided arrivals are general- 
ly characterized by wavetrains of ex- 
tremely long duration (a common char- 
acteristic of guided waves) and fre- 
quencies higher than that of the P phase 
(frequencies higher than 3 hertz are gen- 
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erally observed for more than a minute; Moreover, the suggestion that the 7.8- 
Fig. 3). For these reasons the waveguide km/sec phases may actually be later ar- 
interpretation appears somewhat more riving portions of 8.3-km/sec phases is 
reasonable. weakened by the fact that some 7.8-km/ 

sec phases display strong, abrupt onsets 
(that is, approximately 8 of the 23 phases 
observed had distinct onsets with signal- 
to-noise ratios of > 3: 1; most of the re- 

T = X/(7.76 0.18) - 15.7 

-T =X/(8.33 0.05) + 2.7 

Distance 

Fig. 1 (left). Great circle travel paths for wave- 
guide phases recorded in the Pacific at dis- 
tances greater than 30?. Shading indicates 
those portions of the northwestern Pacific 
Basin which transmit 8.3-km/sec phases out 
to distances of 30?. Fig. 2 (above). Travel 
time curve for waveguide phases observed in 
the Pacific at distances greater than 30? (solid 
line). The travel time curve for the 8.3-km/sec 
waveguide phases observed at distances less 
than 30? is also plotted (dashed line). 
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seismograph, v(apparent velocity) = 7.98 km/sec standard I-hz seismograph, v - 8.00 km/sec 

->I 1 |h-- I minute -i| |<-- I minute 

tp tpn - tp Ip --- 

() Kurile Islands, A = 3244?, m = 6.3, Wake hydrophone,() South of Japan, A = 35.26?, m X 6.3, Midway hydrophone, 
v = 7.96 km/sec v = 7.97 km/sec 

Fig. 3. Examples of Pn phases recorded in the Pacific at distances 
greater than 30?; m = magnitude. 
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maining phases also had distinct onsets 
but signal-to-noise ratios of < 2: 1). 
Since many of these phases had travel 
paths entirely within portions of the 
northwestern Pacific Basin already 
known to have an 8.3-km/sec waveguide 
(shaded area of Fig. 1), two major wave- 
guides seem to be suggested for this part 
of the Pacific. Concerning the possible 
presence of the 7.8-km/sec phase for dis- 
tances less than 30?, it seems reasonable 
that this phase would begin to make its 
appearance as the 30? distance is ap- 
proached. Unfortunately, the only data 
available in the distance range of 19? to 
30? were recorded on low-speed, rectified 
power level recordings of hydro- 
phones. Later arriving phases on these 
recordings are extremely difficult to 
evaluate (6). 

Although data relevant to the exis- 
tence of a waveguide in the North Pacific 
comparable to the northwestern Pacific's 
8.3-km/sec waveguide do not exist (be- 
cause of a lack of stations at appropriate 
epicentral distances), worldwide obser- 
vations suggest that such a waveguide 
should be present for that area as well as 
for large areas of the South Pacific. At 
this time, the extension of a dual wave- 
guide hypothesis to the South Pacific, 
however, would riot be reasonable since 
the 7.8-km/sec waveguide for this region 
would be based on only two poorly re- 
corded phases at Easter Island. 

Propagation of the 8.1- to 8.3-km/sec 
phase has generally been thought to oc- 
cur along a discontinuity surface or with- 
in a waveguide which is close to the 
Mohorovicic discontinuity. Recently, ex- 
planations involving thin high-velocity 
layers have been proposed for this wave- 
guide, as well as for additional upper 
mantle waveguides suggested by long- 
range seismic refraction observations in 
France (7). Such explanations may also 
be applicable to the suspected 7.8-km/ 
sec waveguide reported here. 

Having now obtained evidence for 
high-frequency guided phases to dis- 
tances well in excess of 3300 km (per- 
haps to 7600 km), it is my hope that the 
thought expressed in the following state- 
ment will receive additional, well-de- 
served attention: "It will be the chal- 
lenge to both explosion and earthquake 
seismology for the coming decade to find 
an answer to the question of how P and S 
transmission can occur within the lower 
lithosphere over distances of more than 
1000 km with nearly constant velocity of 
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High-Resolution Soft X-ray Microscopy 

Abstract. X-ray micrographs of biological materials have been obtained with a 
resolution better than 100 angstroms by using x-ray resist as the recording medium. 
A high-resolution scanning electron microscope with a short-focal-length final lens, 
operating in the "low-loss" mode, is used to make the smallest features in the x-ray 

High-Resolution Soft X-ray Microscopy 

Abstract. X-ray micrographs of biological materials have been obtained with a 
resolution better than 100 angstroms by using x-ray resist as the recording medium. 
A high-resolution scanning electron microscope with a short-focal-length final lens, 
operating in the "low-loss" mode, is used to make the smallest features in the x-ray 
replica visible. 

A resolution better than 1000 A has re- 
cently been demonstrated by soft x-ray 
contact micrography by using polymeth- 
yl methacrylate (PMMA) resist for re- 
cording and a scanning electron micro- 
scope (SEM) for magnified viewing of 
the resist replica (1). We present here 
some new results which demonstrate a 
resolution better than 100 A. 

In PMMA breaking of bonds reduces 
the molecular weight and increases the 
dissolution rate in a proper solvent (2). 
Development in this solvent produces a 
relief replica of the object, where the 
higher elevations correspond to a higher 
absorption of the specimen. The limit of 
the resolution of an x-ray resist is the ef- 
fective range 8 of secondary electrons 
which are produced in the resist by soft 
x-ray absorption (3). Measurements 
have shown that this range increases lin- 
early with the energy E of the incident x- 
rays and that a value 8 z 50 A is ob- 
tained for carbon Ka (E = 277 ev) x-rays 
(4). The highest resolution to be ex- 
pected is for the wavelength range 
around 50 A. For shorter wavelengths 
(higher energies) the resolution de- 
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creases because of the increasing range 
of secondary electrons; for longer 
wavelengths the resolution decreases be- 
cause diffraction effects become domi- 
nant. 

For our high-resolution experiments 
we have used carbon Ka radiation 
(wavelength X =A 44.8 A) and radiation 
from the DESY synchrotron in Ham- 
burg, which was operating at an electron 
energy of 7 Gev and a current of 5 ma. 
The spectrum of the DESY synchrotron 
radiation was modified by reflecting it 
from a gold mirror at a glancing angle of 
4? to eliminate the hard radiation with 
X < 25 A. The effective exposure spec- 
trum of the resist under this condition 
extends from about 30 to 44 A (5). 

Figure 1 shows a scanning electron mi- 
crograph of the resist replica obtained 
from a section of a salivary gland 
chromosome of Drosophila with carbon 
Ka radiation. The micrograph was ob- 
tained in a commercial SEM, and the fin- 
est details visible correspond to the reso- 
lution of this instrument (. 250 A). 

Figure 2 shows the x-ray images of a 
section of the retina pigment epithelium 
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