
The mechanism by which transmission 
through the dentate gyrus is controlled 
may be inferred from the stimulus-re- 
sponse relationship for the ESP, shown 
in Fig. 1, B3 and C3. The synaptic cur- 
rent, in contrast to the action current, is 
greater during the alert state than it is 
during SWS and REM. This suggests 
that the granule cells receive tonic inhib- 
itory influences during the alert state 
which do not operate during SWS and 
REM, or tonic excitatory influences dur- 
ing SWS and REM which do not operate 
during the alert state, or both. In either 
case, the cell membranes are relatively 
hyperpolarized during the alert state and 
are relatively depolarized during SWS 
and REM, with the consequence that an 
afferent volley of constant size will 
evoke a larger synaptic current during 
the alert state, but will be less effective in 
evoking action potentials in the granule 
cells. 

Deadwyler et al. (11) reported the 
existence of a physiological pathway 
projecting back from the CA3 zone of the 
hippocampal formation to the ipsilateral 
entorhinal cortex. Figure 1, A4, shows a 
record from the entorhinal cortex in re- 
sponse to stimulation of the angular 
bundle that is similar to the response pre- 
viously found to direct stimulation of 
CA3, except that the late negative poten- 
tial is about 3 msec greater in latency in 
the present experiment. This response 
presumably represents the same process 
of entorhinal cortex activation via CA3 
(11). The magnitude of this ESP was also 
found to vary according to the animal's 
behavioral state, as shown in Fig. 1, B4 
and C4. The difference in the ESP be- 
tween SWS and the alert state seen in the 
entorhinal cortex is similar to that which 
has already been shown to occur in the 
EAP's both in the dentate gyrus and in 
CA1. During REM, the response in the 
entorhinal cortex is large, just as during 
SWS. This is what occurs also in the 
dentate gyrus, but is in contrast to what 
happens in CA1 where the response dur- 
ing REM is small. This suggests that the 
relative ineffectiveness of transmission 
from perforant pathway to CA1 that 
occurs during REM is due to some pro- 
cess that acts at the CA1 level and not 
at CA3. 

We have shown that at various synap- 
ses in the hippocampal formation the ef- 
fectiveness of neuronal transmission is 
greater during some behavioral states 
than during others. This behavioral influ- 

The mechanism by which transmission 
through the dentate gyrus is controlled 
may be inferred from the stimulus-re- 
sponse relationship for the ESP, shown 
in Fig. 1, B3 and C3. The synaptic cur- 
rent, in contrast to the action current, is 
greater during the alert state than it is 
during SWS and REM. This suggests 
that the granule cells receive tonic inhib- 
itory influences during the alert state 
which do not operate during SWS and 
REM, or tonic excitatory influences dur- 
ing SWS and REM which do not operate 
during the alert state, or both. In either 
case, the cell membranes are relatively 
hyperpolarized during the alert state and 
are relatively depolarized during SWS 
and REM, with the consequence that an 
afferent volley of constant size will 
evoke a larger synaptic current during 
the alert state, but will be less effective in 
evoking action potentials in the granule 
cells. 

Deadwyler et al. (11) reported the 
existence of a physiological pathway 
projecting back from the CA3 zone of the 
hippocampal formation to the ipsilateral 
entorhinal cortex. Figure 1, A4, shows a 
record from the entorhinal cortex in re- 
sponse to stimulation of the angular 
bundle that is similar to the response pre- 
viously found to direct stimulation of 
CA3, except that the late negative poten- 
tial is about 3 msec greater in latency in 
the present experiment. This response 
presumably represents the same process 
of entorhinal cortex activation via CA3 
(11). The magnitude of this ESP was also 
found to vary according to the animal's 
behavioral state, as shown in Fig. 1, B4 
and C4. The difference in the ESP be- 
tween SWS and the alert state seen in the 
entorhinal cortex is similar to that which 
has already been shown to occur in the 
EAP's both in the dentate gyrus and in 
CA1. During REM, the response in the 
entorhinal cortex is large, just as during 
SWS. This is what occurs also in the 
dentate gyrus, but is in contrast to what 
happens in CA1 where the response dur- 
ing REM is small. This suggests that the 
relative ineffectiveness of transmission 
from perforant pathway to CA1 that 
occurs during REM is due to some pro- 
cess that acts at the CA1 level and not 
at CA3. 

We have shown that at various synap- 
ses in the hippocampal formation the ef- 
fectiveness of neuronal transmission is 
greater during some behavioral states 
than during others. This behavioral influ- 
ence may be conceptualized as a gating 
process which operates at several critical 
hippocampal junctures. In the dentate 
gyrus the mechanism by which gating is 
effected appears to be either an excita- 

10 JUNE 1977 

ence may be conceptualized as a gating 
process which operates at several critical 
hippocampal junctures. In the dentate 
gyrus the mechanism by which gating is 
effected appears to be either an excita- 

10 JUNE 1977 

tory influence which is tonically active 
during SWS and REM or an inhibitory 
influence which is tonically active during 
the alert state (12). Our findings do not 
distinguish which of these two mecha- 
nisms occurs. However, a substrate for 
an inhibitory mechanism may be pro- 
vided by other findings. There are exten- 
sive noradrenergic and serotonergic ter- 
minations in the dentate gyrus (4). These 
transmitters are known to produce inhi- 
bition of neuronal firing rates in the hip- 
pocampus, and their neurons of origin 
fire more rapidly during the alert state 
than during SWS (4, 5). These findings, 
taken together, are compatible with the 
inhibitory mechanism of behavioral gat- 
ing. However, further experiments are 
necessary to resolve this point. 

The behaviorally specific gating that 
we have shown to occur in the hippo- 
campal formation controls the passage of 
information both into the hippocampal 
formation and from it to extra-hippocam- 
pal structures. This gating apparently un- 
derlies central nervous system processes 
that occur during waking behavior, 
SWS, and REM. 
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Many arboreal members of the glass- 
frog family Centrolenidae and tree-frog 
family Hylidae are green, and thus 
cryptically colored when viewed in vis- 
ible light (400 to 700 nm). Infrared color 
photography (1) reveals that two cen- 
trolenids (Centrolenella fleischmanni, C. 
prosoblepon) and two phyllomedusine 
hylids (Agalychnis moreletii, Pachyme- 
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dusa dacnicolor) also reflect light in the 
near-infrared region (700 to 900 nm). 
This is, to our knowledge, the first report 
of infrared reflectance in neotropical 
frogs. Since photosynthetic leaf surfaces 
also reflect infrared, these animals are 
virtually indistinguishable from the 
leaves on which they sit, both in visible 
and near-infrared light ranges. All other 
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ters) when examined by infrared color photography. Infiared reflectance may confer 
adaptive advantage to these arboreal frogs both in thermoregulation and infrared 
cryptic coloration. 
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North American frogs so examined 
[Bufo debilis, B. boreas (2), B. coniferus; 
Rana pipiens (2), R. palmipes, R. cates- 
beiana; Hyla cinerea, H. squirella, H. 
euphorbiacea, H. chaneque, and H. cy- 
anomma] absorb infrared light and stand 
out sharply against foliage (Fig. 1). 

Cott (3), using black and white in- 
frared film, found that the Australian 
tree-frog Hyla coerulea (=Litoria cae- 
rulea) reflects infrared light. Litoria cae- 
rulea, A. moreletii, and A. (=Pachyme- 
dusa) dacnicolor all contain a newly dis- 
covered red pigment in unusual 

melanosomes (4). Bothfleischmanni and 
prosoblepon groups of Centrolenella 
contain a purple pigment in their chro- 
matophores (5). Whether these two skin 
pigments are identical, or play any role 
in infrared reflectance, has not been de- 
termined. 

There are two likely functions for in- 
frared reflectance in leaf-sitting frogs. (i) 
Although the near-infrared is not heat 
(6), photons of these wavelengths will 
lose energy as heat if they are absorbed 
by the skin. Thus, the ability to reflect 
infrared may play a physiological role in 

Fig. 1. A comparison of the color characteristics of a hylid and a centrolenid frog in a conven- 
tional (top) and an infrared (bottom) color photograph. Although both frogs match the green leaf 
in light ranges visible to man, only Centrolenella fleischmanni (top frog) reflects near-infrared 
light. This allows it to blend with foliage both in the visible and near-infrared ranges of light, 
unlike Hyla cinerea (bottom frog), which absorbs infrared and is distinguished from the leaf 
surface in an infrared photograph. 
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thermoregulation by preventing exces- 
sive heat gain. (ii) Infrared reflectance 
may conceal frogs from predators with 
infrared receptors (3). Little research has 
been done on near-infrared sensitivity, 
and supportive evidence is sparse. Both 
the eyes of birds and the pit organs of 
snakes may act as near-infrared light re- 
ceptors. In pigeons and chickens, the 
sensitivity maxima of the eyes are 
shifted toward longer wavelengths than 
those of humans (7), and the tawny owl 
responds to infrared light (900 nm) (8). 
Visual sensitivity extending just into the 
near-infrared would allow birds to see 
most green frogs on green leaves, al- 
though centrolenids and phyllomedu- 
sines would remain camouflaged. Boid 
and crotaline pit organs are usually inter- 
preted as thermal detectors, adaptations 
for nocturnal predation on warm-blood- 
ed prey (9). In diurnal snakes, however, 
these receptors may be used to detect 
frogs that act as infrared sinks among 
leaves that are reflecting light of these 
wavelengths. The facial pits of crotaline 
snakes are directionally sensitive and 
may allow infrared depth perception 
(10). Many species of birds and snakes 
are known to eat frogs and forage in their 
diurnal retreats. Predation by birds and 
snakes may have selected for infrared 
cryptic coloration in tropical leaf-sitting 
frogs. 
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pathology. 

The recent discovery of endogenously 
produced opioid peptides (I) called en- 
dorphins has been followed by the hy- 
pothesis that these substances may be 
implicated in the pathophysiology of 
schizophrenia (2). This hypothesis is 
supported by the following findings: (i) 
An endorphin has elevated levels in the 
cerebrospinal fluid (CSF) of schizo- 
phrenics (3). (ii) These levels decrease to 
normal when the patients improve clini- 
cally (3). (iii) A specific opiate antagonist 
(naloxone, 0.4 mg, given intravenously) 
reverses schizophrenic hallucinations 
(2). The main purpose of our study was 
to verify the therapeutic effect of nalox- 
one in schizophrenic hallucinations. 

Seven hospital patients (six females 
and one male) meeting the standard diag- 
nostic criteria for schizophrenia (4) were 
the subjects. All patients reported having 
very frequent auditory hallucinations; 
six of them hallucinated continuously. 
The age range was 24 to 50 years, the du- 
ration of illness was 4 to 30 years. Four 
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patients were diagnosed as paranoid, and 
three were diagnosed as undifferentiated 
schizophrenia. All patients were receiv- 
ing antipsychotic medication before and 
during the experimental period. 

Two psychiatrists using a modified 
Brief Psychiatric Rating Scale (5) 
(BPRS) interviewed the patients. All in- 
terviews were videotaped. Three such 
interviews occurred within the week pre- 
ceding the start of the experiment. The 
patients were then given an intravenous 
injection of either 0.4 mg of naloxone or 
of a placebo (0.9 percent saline). The 
BPRS interviews were held immediately 
before each injection and then at 5 min- 
utes, 30 minutes, 1 hour, 2 hours, 3 
hours, 4 hours, and 24 hours after the in- 
jection. Each patient received at least 
one injection of naloxone and one of pla- 
cebo. The injections were given 24 to 72 
hours apart, at the same time of day, in a 
semirandomized order. Coded proce- 
dures were observed throughout the ex- 
periment. The results of the first two in- 
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jections are displayed in Figs. 1 and 2. 
No average difference between naloxone 
and placebo was seen. Two patients re- 
ported a decrease of hallucinations after 
having been given placebo. However, 
two other patients showed a slight reduc- 
tion of hallucinations after naloxone, 
without any response to placebo. To test 
the stability of these findings, one of 
these "responders" was given an addi- 
tional injection of 0.4 mg of naloxone 
without any effect. 

The other "responder," however, 
again improved after an additional in- 
jection of naloxone (0.4 mg). This patient 
subsequently received five injections of 
placebo, three injections of 0.8 mg of 
naloxone, and one injection of 1.2 mg of 
naloxone, in a semirandomized order. 
The results do not demonstrate any sys- 
tematic difference between the effects of 
naloxone and placebo. We therefore 
conclude that the slight reduction of hal- 
lucinations in this patient after the first 
two injections of naloxone was a func- 
tion either of chance or of a placebo ef- 
fect. 

In view of the fact that we failed to see 
any effect of naloxone, we hypothesized 
that our drug might have deteriorated in 
storage. We have therefore tested its po- 
tency in rats and found that it did have 
the expected antagonist action (6). 

We conclude that the report (2) of re- 
versal of schizophrenic hallucinations by 
naxolone cannot be replicated. Although 
our patient sample was similar to that 
described in (2) in average age and 
duration of illness, some other differ- 
ences between the patient sets may 
have contributed to the divergent re- 
sults. In contradistinction to Gunn et al. 
(2), we have used coded procedures, and 
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Fig. 1 (left). The effect of naloxone (0.4 mg, given intravenously) and of placebo on hallucinations. Each point represents the average of six 
patients. (One patient is not included because she did not hallucinate continuously during the baseline assessments.) The baseline measure 
represents the average of three interviews held in a period of 1 week. The vertical lines represent standard deviations. The scale for hallucina- 
tions ranges between 1 (absent) and 7 (extremely severe). Fig. 2 (right). The effect of naloxone (0.4 mg, given intravenously) and of placebo 
on the global modified BPRS score (excluding the score item "hallucinatory behavior"). Each point represents the average of the seven patients. 
The vertical lines are standard deviations. The minimal global score (no psychopathology) is 15; the maximum is 105. 
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Naloxone in Chronic Schizophrenia 

Abstract. The specific narcotic antagonist naloxone (0.4 milligram) was given in- 
travenously to seven chronic schizophrenics who reported that they had very 
frequent auditory hallucinations. Saline solution was used as a placebo. The coded 
study did not reveal any effect of naloxone on hallucinations or on global psycho- 
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