
portant, it must be realized that the full 
potential of the information utility de- 
pends on dramatic changes in informa- 
tion system usage and structure (for ex- 
ample, electronic mail, electronic filing, 
automated office operation, and elec- 
tronic funds transfer). In many cases, 
these changes are more under the control 
of information system designers and 
users than of computer manufacturers. 
An informed user community is an im- 
portant requirement for future progress. 

Summary 

Demands for more effective informa- 
tion management, coupled with ad- 
vances in computer hardware and soft- 
ware technology, have resulted in the 
emergence of the information utility con- 
cept, whereby computers specialized for 
information storage and processing serve 
as information nodes. The information 
nodes, which may be interconnected, 
can provide information management 
services to both conventional and per- 
sonal computers. In this article the key 
hardware and software components of 
classical information systems are de- 
scribed to provide background on the re- 

portant, it must be realized that the full 
potential of the information utility de- 
pends on dramatic changes in informa- 
tion system usage and structure (for ex- 
ample, electronic mail, electronic filing, 
automated office operation, and elec- 
tronic funds transfer). In many cases, 
these changes are more under the control 
of information system designers and 
users than of computer manufacturers. 
An informed user community is an im- 
portant requirement for future progress. 

Summary 

Demands for more effective informa- 
tion management, coupled with ad- 
vances in computer hardware and soft- 
ware technology, have resulted in the 
emergence of the information utility con- 
cept, whereby computers specialized for 
information storage and processing serve 
as information nodes. The information 
nodes, which may be interconnected, 
can provide information management 
services to both conventional and per- 
sonal computers. In this article the key 
hardware and software components of 
classical information systems are de- 
scribed to provide background on the re- 

quirements for an information utility. 
Four approaches to the development of 
specialized information nodes, drawing 
on various advances in technology, are 
presented: (i) firmware enhancement, (ii) 
intelligent controllers, (iii) minicomputer 
back-end processors, and (iv) highly 
modular database machines. The bene- 
fits of these advances will be systems 
that are more efficient, reliable, and easy 
to use. 

References 

1. H. Hollomon, Technol. Rev. 77, 57 (January 
1975). 

2. J. W. Forrester, "Dynamics of socio-economic 
systems," Report D-2230-1, MIT Systems Dy- 
namics Group, Cambridge, Mass., August 1975. 

3. J. J. Donovan and S. E. Madnick, Database 8 
(No. 9), 79 (1977). 

4. S. E. Madnick and J. J. Donovan, Operating 
Systems (McGraw-Hill, New York, 1974). 

5. B. Edelson, Science 195, 1125 (1977). 
6. D. Farber and P. Barran, ibid., p. 1166. 
7. M. Irwin and S. Johnson, ibid., p. 1170. 
8. S. E. Miller, ibid., p. 1211. 
9. R. J. Potter, ibid., p. 1160. 

10. W. Myers, Computer 9 (No. 11), 48 (1976). 
11. R. Noyce, Science 195, 1102 (1977). 
12. J. Rajchman, ibid., p. 1223. 
13. H.D. Mills, ibid.,p. 1199. 
14. J. P. Eckert, Computer 9 (No. 12), 58 (1976). 
15. J. Conway and P. Snigier, EDN 21 (No. 21), 95 

(1976). 
16. H. D. Toong,AFIPS Conf. Proc. 44, 567 (1975). 
17. S. E. Madnick, Technol. Rev. 75, 8 (July/August 

1973). 
18. ____ , IEEE Intercon Conf. Rec. (1975), 

pp. 20/1-1 to 20/1-7. 
19. R. R. Martin and H. D. Frankel, Computer 8 

(No. 2), (1975). 

quirements for an information utility. 
Four approaches to the development of 
specialized information nodes, drawing 
on various advances in technology, are 
presented: (i) firmware enhancement, (ii) 
intelligent controllers, (iii) minicomputer 
back-end processors, and (iv) highly 
modular database machines. The bene- 
fits of these advances will be systems 
that are more efficient, reliable, and easy 
to use. 

References 

1. H. Hollomon, Technol. Rev. 77, 57 (January 
1975). 

2. J. W. Forrester, "Dynamics of socio-economic 
systems," Report D-2230-1, MIT Systems Dy- 
namics Group, Cambridge, Mass., August 1975. 

3. J. J. Donovan and S. E. Madnick, Database 8 
(No. 9), 79 (1977). 

4. S. E. Madnick and J. J. Donovan, Operating 
Systems (McGraw-Hill, New York, 1974). 

5. B. Edelson, Science 195, 1125 (1977). 
6. D. Farber and P. Barran, ibid., p. 1166. 
7. M. Irwin and S. Johnson, ibid., p. 1170. 
8. S. E. Miller, ibid., p. 1211. 
9. R. J. Potter, ibid., p. 1160. 

10. W. Myers, Computer 9 (No. 11), 48 (1976). 
11. R. Noyce, Science 195, 1102 (1977). 
12. J. Rajchman, ibid., p. 1223. 
13. H.D. Mills, ibid.,p. 1199. 
14. J. P. Eckert, Computer 9 (No. 12), 58 (1976). 
15. J. Conway and P. Snigier, EDN 21 (No. 21), 95 

(1976). 
16. H. D. Toong,AFIPS Conf. Proc. 44, 567 (1975). 
17. S. E. Madnick, Technol. Rev. 75, 8 (July/August 

1973). 
18. ____ , IEEE Intercon Conf. Rec. (1975), 

pp. 20/1-1 to 20/1-7. 
19. R. R. Martin and H. D. Frankel, Computer 8 

(No. 2), (1975). 

20. J. H. Wensley, ibid., p. 30. 
21. P. J. Denning, ACM Comput. Surv. 2 (No. 3), 

153 (1970). 
22. G. Mueller, Computer 9 (No. 12), 100 (1976). 
23. S. H. Fuller, V. R. Lesser, C. G. Bell, C. H. 

Kaman, IEEE Trans. Comput. C-25 (No. 10), 
1000 (1976). 

24. A. Armenti, S. Galley, R. Goldberg, J. Nolan, 
A. Sholl, AFIPS Conf. Proc. 36, 313 (1970). 

25. C. Bachman, ibid. 44, 569 (1975). 
26. A. Hassitt and L. E. Lyon, IBM Syst. J. 15 (No. 

4), 358 (1976). 
27. R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Trai- 

ger, ibid. 9 (No. 2), 78 (1970). 
28. R. M. Meade,AFIPS Conf. Proc. 37, 33 (1970). 
29. C. Johnson, ibid. 44, 509 (1975). 
30. G. R. Aheam, Y. Dishon, R. N. Snively, IBM J. 

Res. Dev. 16 (No. 1), 11 (1972). 
31. S. Y. Su and G. J. Lipovski, in Proceedings of 

the International Conference on Very Large 
Data Bases (Association for Computing Ma- 
chinery, New York, 1975), pp. 456-472. 

32. E. A. Ozkarahan, S. A. Schuster, K. C. Smith, 
AFIPS Conf. Proc. 44, 379 (1975). 

33. S. C. Lin, D. C. P. Smith, J. M. Smith, ACM 
Trans. Database Syst. 1, 53 (March 1976). 

34. R. H. Canaday, R. D. Harrison, E. L. Ivie, J. L. 
Ryder, L. A. Wehr, Commun. ACM 17 (No. 10), 
575 (1974). 

35. H. C. Heacox, E. S. Cosloy, J. B. Cohen, in 
Proceedings of the International Conference on 
Very Large Data Bases (Association for Com- 
puter Machinery, New York, 1975), pp. 511- 
513. 

36. R. I. Baum and D. K. Hsiao, IEEE Trans. Com- 
put. C-25 (No. 12), 1254 (1976). 

37. T. Marill and D. Stern, AFIPS Conf. Proc. 44, 
389 (1975). 

38. J. Verity, Electron. News (3 January 1977), p. 
28. 

39. S. M. Ornstein, W. R. Crowgher, M. F. Kraley, 
R. D. Bressler, A. Michel, F. E. Heart, AFIPS 
Conf. Proc. 44, 551 (1975). 

40. S. E. Madnick, ibid., p. 581. 
41. J. J. Donovan, ACM Trans. Database Syst. 4 

(No. 1), 344 (1976). 
42. F. G. Withington, Datamation 21 (No. 1), 54 

(1975). 

20. J. H. Wensley, ibid., p. 30. 
21. P. J. Denning, ACM Comput. Surv. 2 (No. 3), 

153 (1970). 
22. G. Mueller, Computer 9 (No. 12), 100 (1976). 
23. S. H. Fuller, V. R. Lesser, C. G. Bell, C. H. 

Kaman, IEEE Trans. Comput. C-25 (No. 10), 
1000 (1976). 

24. A. Armenti, S. Galley, R. Goldberg, J. Nolan, 
A. Sholl, AFIPS Conf. Proc. 36, 313 (1970). 

25. C. Bachman, ibid. 44, 569 (1975). 
26. A. Hassitt and L. E. Lyon, IBM Syst. J. 15 (No. 

4), 358 (1976). 
27. R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Trai- 

ger, ibid. 9 (No. 2), 78 (1970). 
28. R. M. Meade,AFIPS Conf. Proc. 37, 33 (1970). 
29. C. Johnson, ibid. 44, 509 (1975). 
30. G. R. Aheam, Y. Dishon, R. N. Snively, IBM J. 

Res. Dev. 16 (No. 1), 11 (1972). 
31. S. Y. Su and G. J. Lipovski, in Proceedings of 

the International Conference on Very Large 
Data Bases (Association for Computing Ma- 
chinery, New York, 1975), pp. 456-472. 

32. E. A. Ozkarahan, S. A. Schuster, K. C. Smith, 
AFIPS Conf. Proc. 44, 379 (1975). 

33. S. C. Lin, D. C. P. Smith, J. M. Smith, ACM 
Trans. Database Syst. 1, 53 (March 1976). 

34. R. H. Canaday, R. D. Harrison, E. L. Ivie, J. L. 
Ryder, L. A. Wehr, Commun. ACM 17 (No. 10), 
575 (1974). 

35. H. C. Heacox, E. S. Cosloy, J. B. Cohen, in 
Proceedings of the International Conference on 
Very Large Data Bases (Association for Com- 
puter Machinery, New York, 1975), pp. 511- 
513. 

36. R. I. Baum and D. K. Hsiao, IEEE Trans. Com- 
put. C-25 (No. 12), 1254 (1976). 

37. T. Marill and D. Stern, AFIPS Conf. Proc. 44, 
389 (1975). 

38. J. Verity, Electron. News (3 January 1977), p. 
28. 

39. S. M. Ornstein, W. R. Crowgher, M. F. Kraley, 
R. D. Bressler, A. Michel, F. E. Heart, AFIPS 
Conf. Proc. 44, 551 (1975). 

40. S. E. Madnick, ibid., p. 581. 
41. J. J. Donovan, ACM Trans. Database Syst. 4 

(No. 1), 344 (1976). 
42. F. G. Withington, Datamation 21 (No. 1), 54 

(1975). 

Computer software began as an after- 
thought to computer hardware, and, as 
long as the hardware was small and 
simple, software could be handled infor- 
mally by scientifically trained people as a 
by-product of the use intended for the 
hardware. As hardware grew in size and 
complexity, richer software possibilities 
emerged and software specialists (pro- 
grammers) appeared, to produce assem- 
blers, compilers, operating systems, and 

Computer software began as an after- 
thought to computer hardware, and, as 
long as the hardware was small and 
simple, software could be handled infor- 
mally by scientifically trained people as a 
by-product of the use intended for the 
hardware. As hardware grew in size and 
complexity, richer software possibilities 
emerged and software specialists (pro- 
grammers) appeared, to produce assem- 
blers, compilers, operating systems, and 

The author is an IBM Fellow at International 
Business Machines Corporation, Gaithersburg, 
Maryland 20760. He also teaches computer science 
part time at the University of Maryland, College 
Park. 

18 MARCH 1977 

The author is an IBM Fellow at International 
Business Machines Corporation, Gaithersburg, 
Maryland 20760. He also teaches computer science 
part time at the University of Maryland, College 
Park. 

18 MARCH 1977 

data management systems. Although 
there was an early recognition of mathe- 
matical ideas in computing, for example, 
in mathematical logic, automata theory, 
and linguistics, the bulk of these soft- 
ware specialists were pragmatic prod- 
ucts of computing practice rather than 
mathematicians. Thus, although it may 
seem surprising, the rediscovery of soft- 
ware as a form of mathematics in a deep 
and literal sense is just now beginning to 
penetrate university research and teach- 
ing, as well as industry and government 
practices. The forcing factor in this redis- 
covery has been the growth of software 

data management systems. Although 
there was an early recognition of mathe- 
matical ideas in computing, for example, 
in mathematical logic, automata theory, 
and linguistics, the bulk of these soft- 
ware specialists were pragmatic prod- 
ucts of computing practice rather than 
mathematicians. Thus, although it may 
seem surprising, the rediscovery of soft- 
ware as a form of mathematics in a deep 
and literal sense is just now beginning to 
penetrate university research and teach- 
ing, as well as industry and government 
practices. The forcing factor in this redis- 
covery has been the growth of software 

complexity and the inability of informal 
software practices and management to 
cope with it. 

Of course, software makes totally new 
demands in the sheer volume of logical 
precision required in its application. A 
single project may occupy hundreds, 
even thousands, of people over several 
years, so that there are unique require- 
ments for recording, communication, 
and management of the work. These 
unique requirements lead to almost all of 
the jargon in software, and, in fact, this 
jargon tends to obscure the mathematical 
character of software, as people get 
caught up in implementation and manage- 
ment details. But the failure to under- 
stand this mathematical character led to 
an overly complex, ad hoc view of soft- 
ware based on historical and accidental 
ideas, which were often reinvented in 
ignorance and haste. 

The work of Dijkstra and Hoare has 
been a major force in this rediscovery of 
software as mathematics. In (1, p. 4.2), 
Dijkstra has presented an argument 
which spms up the case I want to make 
here: 

As soon as programming emerges as a 
battle against unmastered complexity, it is 
quite natural that one turns to that mental 
discipline whose main purpose has been since 

1199 

complexity and the inability of informal 
software practices and management to 
cope with it. 

Of course, software makes totally new 
demands in the sheer volume of logical 
precision required in its application. A 
single project may occupy hundreds, 
even thousands, of people over several 
years, so that there are unique require- 
ments for recording, communication, 
and management of the work. These 
unique requirements lead to almost all of 
the jargon in software, and, in fact, this 
jargon tends to obscure the mathematical 
character of software, as people get 
caught up in implementation and manage- 
ment details. But the failure to under- 
stand this mathematical character led to 
an overly complex, ad hoc view of soft- 
ware based on historical and accidental 
ideas, which were often reinvented in 
ignorance and haste. 

The work of Dijkstra and Hoare has 
been a major force in this rediscovery of 
software as mathematics. In (1, p. 4.2), 
Dijkstra has presented an argument 
which spms up the case I want to make 
here: 

As soon as programming emerges as a 
battle against unmastered complexity, it is 
quite natural that one turns to that mental 
discipline whose main purpose has been since 

1199 

Software Engineering 

A mathematical basis is needed for the practical 
control of computers in complex applications. 

Harlan D. Mills 

Software Engineering 

A mathematical basis is needed for the practical 
control of computers in complex applications. 

Harlan D. Mills 



centuries to apply effective structuring to oth- 
erwise unmastered complexity. That mental 
discipline is more or less familiar to all of us, it 
is called Mathematics. If we take the exis- 
tence of the impressive body of Mathematics 
as the experimental evidence for the opinion 
that for the human mind the mathematical 
method is indeed the most effective way to 
come to grips with complexity, we have no 
choice any longer: we should reshape our 
field of programming in such a way that the 
mathematician's methods become equally ap- 
plicable to our programming problems, for 
there are no other means. 

This rediscovery of a disciplined basis 
for software development is finding ex- 

pression in the recognition of software 

engineering as a topic for international 
technical conferences and technical jour- 
nals. Boehm (2) has surveyed software 

engineering topics from the point of view 
of the life cycle and management of soft- 
ware. Mills (3) has discussed software 

development. 

The Breakdown of Simple Practice 

Early computers were scarce and re- 
markable resources. Thus, meeting the 
computer on its own terms-reading bi- 

nary notations, debugging, and patching 
in machine code, working at 2 a.m.-was 
a natural thing. Programming was a part 
of problem-solving with a fantastic new 
assistant. A little later, programming be- 
came a way of dealing with computers on 

behalf of others-scientists, administra- 

tors, or systems engineers. More pro- 
gramming was done on behalf of pro- 
grammers themselves-building com- 

pilers, operating systems, and devel- 

oping data management systems. But 
somewhere along the way, the magnifi- 
cent dreams often turned into night- 
mares. What seemed easy-the devel- 

opment of a command control system, 
an information management system, a 

world-champion automatic chess player 
-turned out to be extremely difficult 

or impossible. Major undertakings often 
took two to ten times as long as had been 

expected or had to be abandoned. 
What happened? The computers had 

the same simple instruction sets as be- 

fore. The programmers still knew ex- 

actly how the machine worked. The 

designers still knew how to lay out a 

system and its development in a system- 
atic modular way, which could be con- 
structed in small units and assembled 
into larger and larger subsystems until 

the final system was completed. 
What happened was that complexity 

was growing out of control. Program 
storage and speed, like dollars, can be 
measured and aggregated, and budgets 
set up to manage their allocations and 

1200 

use. But there is no effective concept for 
measuring program complexity today, 
and complexity budgeting and control in 
a quantitative way is unknown. Yet the 
principal limitation to the development, 
maintenance, and operation of data- 
processing systems today is sheer com- 
plexity. Hardware storage and speed are 
more than sufficient; in fact, storage and 
speed are ill used today because of in- 
efficiencies forced by complexity and 
overdesign resulting from complexity. 

Brooks, the manager of one of the 
most complex software projects yet at- 
tempted, the IBM OS/360 project, noted 
that "conceptual integrity is the most im- 
portant consideration in system design" 
(4, p. 42) and reported on his experience 
in managing the development of OS/360 
(4, pp. 47-48): 

It is a very humbling experience to make a 
multimillion-dollar mistake, but it is also very 
memorable. I vividly recall the night we de- 
cided how to organize the actual writing of ex- 
ternal specifications for OS/360. The manager 
of architecture, the manager of control pro- 
gram implementation, and I were threshing 
out the plan, schedule, and division of respon- 
sibilities. The architecture manager had 10 
good men. He asserted that they could write 
the specifications and do it right. It would take 
ten months, three more than the schedule al- 
lowed. 

The control program manager had 150 men. 
He asserted that they could prepare the speci- 
fications, with the architecture team coordi- 
nating; it would be well-done and practical, 
and he could do it on schedule. Furthermore, 
if the architecture team did it, his 150 men 
would sit twiddling their thumbs for ten 
months. 

To this the architecture manager responded 
that if I gave the control program team the re- 
sponsibility, the result would not in fact be on 
time, but would also be three months late, and 
of much lower quality. I did, and it was. He 
was right on both counts. Moreover, the lack 
of conceptual integrity made the system far 
more costly to build and change, and I would 
estimate that it added a year to debugging 
time. 

Software Redefined 

The term "software" was originally a 
poetic synonym for "program." But, 
over time, important reasons have 
emerged to expand the meaning of "soft- 
ware" to something considerably be- 
yond "program." These reasons are re- 
lated to a change of view of data process- 
ing, from a hardware-centered to a sys- 
tems-centered perspective. Early com- 
puters were such scarce and dramatic re- 
sources that it was natural to relate all 
other activities to them. But, as hard- 

ware became more available and embed- 

ded in even more complex systems, it of- 

ten seemed more useful to regard hard- 

ware as components in such systems 

instead of their centers, as discussed by 
Mills (5). 

Although such a use was not realized 
in the early days of computer tech- 
nology, it is clear now that one major use 
of software consists of prescribing the 
harmonious cooperation of asynchro- 
nously operating hardware. But, a 
simple extension is possible here, specif- 
ically to incorporate people as agents of 
action into this formal sphere of harmon- 
ious cooperation as well. People have 
the same architectural characteristics as 
hardware but with radically different per- 
formance parameters in terms of storage, 
processing, and reliability, and they have 
radically different instruction sets. A 
person can carry out the logical opera- 
tions of a computer (millions of times 
more slowly), but a person can also exe- 
cute the instruction "use your common 
sense" (millions of times faster). For ex- 
ample, in an airline reservation system, 
customer service people serve as critical 
analog-to-digital components in convert- 
ing voice to key stroke and digital dis- 
plays back to voice in dealing with cus- 
tomers. 

There is another, older use of soft- 
ware, to directly support a specific piece 
of hardware, which makes that device 
easier to use either by people or by pro- 
grams. For example, a program used to 
control a tape drive may take in com- 
mands to read, write, or rewind the tape, 
but put out instructions to motors or to 
read-write heads at a much lower level of 
detail; when errors are detected, the pro- 
gram may call for automatic retry of 
physical operations, all unknown to the 
program user. In short, such software 
combined with the hardware makes up 
an "abstract machine," easier to use as a 
component than the hardware itself. For 
this reason, I will use the term "ma- 
chine" to mean any command-driven 
combination of hardware and software, 
not just base hardware. 

A set of such hardware-software ma- 
chines can, in turn, be organized, 
through additional software which pro- 
vides for their harmonious cooperation, 
into a larger, more capable, abstract ma- 
chine, which a user (person or program) 
can command and receive results from 
as a single agent. For example, a simple 
computer, with its card readers, printers, 
and other components, all operating 
asynchronously under the control of an 
operating system, can be viewed as just 
such an abstract machine. 

Finally, people can serve as agents of 

action in abstract machines, in much the 

same way as the hardware in the 

foregoing discussion, if the term "soft- 

ware" is expanded to include the ideas 

SCIENCE, VOL. 195 



of user's guides and operating instruc- 
tions for people in their specific roles in a 
system. 

For these reasons, software is better 
defined as "logical doctrine for the har- 
monious cooperation of people and ma- 
chines." Such doctrine takes the form of 
programs for hardware, and com- 
binations of user's guides and operating 
instructions for people. The programs 
may be microprograms, stored in read- 
only storage (for example, "firmware"), 
as well as ordinary programs. In brief, 
software defines a system of abstract ma- 
chines, some of which call on other ab- 
stract machines, until people and hard- 
ware are reached as the ultimate agents 
of action in the system. 

Data Processing 

The data-processing explosion. Al- 
though nothing of the kind existed 25 
years ago, every sizable business, gov- 
ernment agency, and institution in the 
United States now depends in a critical 
way on large data-processing systems. 
Such a system often interfaces thou- 
sands of people with a complex of ma- 
chines-computers, terminals, data-en- 
try devices, many of them in real-time 
communications over considerable dis- 
tances. These large systems may have 
large central computing subsystems, or 
the computing may be distributed over 
several centers. They are inextricably 
tied in with the operations of the enter- 
prise, involved in an astonishing variety 
of science, engineering, and commercial 
tasks. 

With such a short history, it is surpris- 
ing that these large data-processing sys- 
tems exist at all. And yet they are no 
gleam in a crystal ball. They are here 
now, and working well enough to be in- 
dispensable to every sizable undertaking 
in the country but working poorly 
enough to frustrate the managements 
and beneficiaries of these undertakings 
also. 

The engineering of computer hardware 
developed out of the scientific research 
that made it possible, and manufacturers 
of data-processing hardware benefited 
directly from that science and its engi- 
neering. But the problems of putting 
these products of science into practical 
use filter back to the research commu- 
nity much more slowly, because the ap- 
plications are not usually scientific but 
are instead industrial, financial, or ad- 
ministrative. That situation in data pro- 
cessing is accentuated by its very rate of 
development. The close alliance of sci- 
ence and engineering in hardware has 
18 MARCH 1977 

over the last 25 years accomplished 
dramatic achievements in reliability, 
speed, storage, cost, and function. This 
achievement has few parallels in human 
history. 

But the uses of this remarkable hard- 
ware in industry and government have 
led to large, complex, ponderous, unre- 
liable, incompatible data-processing sys- 
tems with no significant precedents or 
guides from science, such as helped to 
shape the hardware. The precedents for 
such complex systems are in the day-by- 
day operations of business and govern- 
ment, as conducted by people, with all 
the local variations and considerable in- 
consistencies that only people could tol- 
erate in operational activities. As a re- 
sult, during the past 25 years there has 
been a much slower rate of improve- 
ment, however it may be measured, in 
the use of hardware than in the hardware 
itself. 

The growth of data processing in in- 
dustry and government reflects the in- 
creased complexity, interdependency, 
and competition among enterprises. One 
example of the interdependency is the 
reporting by industry of payroll informa- 
tion to the Social Security Administra- 
tion and the Internal Revenue Service. 
The information is transferred routinely 
in computer format (this procedure is 
based on the presupposition of wide- 
spread computer operations). The com- 
petition to provide better services to cus- 
tomers through data processing is appar- 
ent in hotel and airline reservation 
systems, insurance and banking, and re- 
tailing. The competition that generates 
these systems also creates a demand for 
their improvement-to systems that are 
more capable, more reliable, more eco- 
nomical, more manageable. In short, 
there is a remarkable hunger across both 
industry and government for better ideas 
and practices from science and engineer- 
ing in data processing. 

Why data-processing practices are 
backward. The data-processing industry 
is a spectacular product of science and 
engineering. But its practice leaves much 
to be desired. It is suffering the growing 
pains of an infant industry that has had 
no time to develop, try out, and select 
sound industrial practices-it is a mix- 
ture of great wisdom and foolish folk- 
lore. It needs help from science and engi- 
neering in the worst way. But the help it 
needs is not simple to provide. 

The bulk of managers and workers in 
data processing have moved into the 
field laterally, without university educa- 
tion in computer science or software en- 
gineering. The principal sources of infor- 
mation for these people are hardware 

manufacturers and trade publications. 
Professional societies and journals play 
an indirect role in transmitting scientific 
and engineering ideas to this community. 
But there is little help to be found in 
trade publications of the industry, be- 
cause the problems are of a deep and 
systematic nature, of unprecedented log- 
ical complexity, and so patent remedies 
are of little value. 

In the early days of computing, many 
very good people from the nation's great 
universities and laboratories moved into 
the field and brought with them or devel- 
oped many sound and enduring ideas. 
With the growth of data processing, the 
bulk of people coming into the field later 
were less highly motivated and edu- 
cated. As a result, data processing has 
expanded in quantity but has decreased 
in average quality, in personnel, over its 
short history. 

This lag in industry practices is of par- 
ticular concern when one is endeavoring 
to identify research needs. Research ef- 
forts take years of educational prepara- 
tion and then deep concentration, often 
over decades. But in data processing, 
with only a 25-year history, industry 
needs are just beginning to emerge. What 
seemed important 10 or 15 years ago may 
be less important now because of this 
changing set of needs. Thus it is all the 
more critical to properly assess future 
trends in data-processing practices, in 
order to anticipate research areas of 
more lasting relevance. 

International competition in data 
processing. Data processing has come to 
be an important national asset in the 
management and organization of indus- 
trial resources in all well-developed 
countries. The value of this data process- 
ing depends on the quality of software 
found in industry and government. For 
example, if poor or unreliable software 
in a grocery chain contributes to the 
spoilage of foodstuffs shipped to the 
wrong place, the energy required to grow 
the food is wasted. Thus, the cumulative 
effect of software quality has a signifi- 
cant impact on the relative industrial 
(and social) health of each country. If 
this is so in the first 25 years, it will be 
even more the case over the next 25 
years. 

Because of this importance of data 
processing in national affairs, the follow- 
ing incident in space activities teaches us 
a lesson. In the late 1950's the United 
States was behind the U.S.S.R. in mis- 
sile booster technology (because it was 
ahead in the miniaturization of atomic 
bombs), and this fact was a cause of con- 
siderable consternation in the United 
States. In retrospect, being behind in 

1201 



S;T 

if B then S else T fi 

while B do S od 

Fig. 1. A set of action primitive. 

booster technology did the U.S. elec- 
tronics industry a real service, because it 
imposed a discipline for miniaturization 
that would otherwise have been difficult 
to enforce. In data processing the situa- 
tion in the two countries is reversed. For 
the last 20 years the United States has 
maintained a commanding lead in com- 
puter power, computers being scarce re- 
sources in the U.S.S.R. The result is that 
the U.S.S.R. now has fewer, but more' 
highly disciplined programmers than the 
United States. 

It is already clear that Japan will be an 
important international force in data 
processing. In addition to Japan's al- 
ready proven ability in electronics pro- 
duction, it has two specific advantages 
for software development in the future 
(which are also shared by the U.S.S.R.). 
,First, the Japanese government has the 
means and apparent resolve to organize 
and coordinate software research and 
development as an instrument of nation- 
al policy, as evidenced by its formation 
of a Joint System Development Corpora- 
tion (6). Second, Japanese industrial and 
labor practices will permit a smooth tran- 
sition into the automation of industrial 
processes, by comparison with the case 
in the United States where automation is 
often regarded as a threat to jobs and la- 
bor and subject to political and social 
delay and disruption. 

The Emerging Idea of Software 

Engineering 

Software tools-technical proving 
grounds. In spite of the complexity bar- 
rier, data-processing systems of large 
size are in widespread operation. In most 
cases they have evolved over decades or 
more into their present forms, and they 
usually represent more perspiration than 
inspiration in their present forms. The 

1202 

major tools for their development and 
maintenance are compilers (and assem- 
blers) for programming languages and 
operating systems (often with extensive 
data management facilities). The devel- 
opment of these tools has been a major 
basis for technical development in pro- 
gramming itself.. Programmers have a 
unique opportunity to build their own 
tools. But, with only a few exceptions, 
the tools themselves have provided more 
experience in what to avoid next time 
than as examples of well-designed and 
documented software. 

The development of compilers pre- 
sents deep and interesting problems in 
programming. It involves text and lan- 
guage processing, which has motivated 
considerable research in formal gram- 
mars and their languages, and studies in 
finite state machines. The compiling 
process calls for the management of ex- 
temporaneous data storage and for the 
accessing of data in flexible ways. Usual- 
ly, the problems of programming com- 
pilers are more difficult than the pro- 
gramming problems solved in the lan- 
guages they compile; for example, a 
programming language with very simple 
data storage facilities will need a com- 
piler which itself requires much more 
flexible data storage. 

The idea of an operating system has 
evolved dramatically over the past two 
decades, both to adapt to new hardware 
capabilities and to respond to new hu- 
man demands. Human interfaces have 
expanded from a single operator entering 
and reading binary coded numbers at a 
primitive console to hundreds of users in 
simultaneous conversation with friendly 
terminals. Operating systems deal with 
multiple processors and multiple pro- 
grams in concurrent execution in these 
various processors, accepting spon- 
taneous, asynchronous signals and data 
between themselves and from outside, 

automatically shuttling programs and 
data to and from high-speed and lower- 
speed storage devices between bursts of 
execution. The development of software 
to supervise this complex asynchronous 
activity has been a second major chal- 
lenge in software development and a 
source of much research in asynchro- 
nous program control, data manage- 
ment, and large system decomposition 
techniques. As in the case of compilers, 
the applications systems which run in 
these operating systems are usually of 
simpler construction, with less demand- 
ing logical and performance require- 
ments, than the operating systems. 

In short, compilers and operating sys- 
tems have served as important proving 
grounds for programming techniques. 
The ideas emerging from these proving 
grounds invariably find use in applica- 
tions systems. For example, the use of 
formal grammars and languages, inspired 
by compiler problems, is now widely 
recognized in the design of applications 
interfaces with users; techniques of large 
system decomposition originating in op- 
erating system designs are now seen to 
be useful in applications systems as well. 

Three software discoveries. The first 
computers were single sequential ma- 
chines which were operated under pro- 
gram control. But, curiously enough, be- 
fore people learned how to program 
these simple machines adequately, new 
hardware was invented which was ca- 
pable of cooperative asynchronous oper- 
ation, and so people immediately set out 
to program the new hardware before 
they had time to master the old. In retro- 
spect, it became necessary, mathemati- 
cally, to retrace these steps-to study 
the programming of sequential processes 
and then the programming of the har- 
monious cooperation of independent se- 
quential processes. In the past decade, 
this study has led to three significant 
software discoveries: (i) the dependable 
design of correct sequential processes; 
(ii) the synchronization of independent 
sequential processes for harmonious co- 
operation; and (iii) the organization of 
software-hardware into systems of ab- 
stract machines. 

Dijkstra has played a leading role in 
bringing all three of these discoveries to 
light. In the first place, he introduced the 
idea of "structured programming" (7) as 
a systematic method of design for se- 
quential processes, based on the need for 
mathematical proofs for their correct- 
ness. In order to cope with the scale-up 
in size, in order to keep proof size pro- 
portional to program size, he found it 
necessary (and, surprisingly, possible) to 
restrict the freedom of design to a small, 

SCIENCE, VOL. 195 

sequence 

ifthenelse 

whiledo 

__ T 



finite set of primitive sequential process- 
es. This restriction was described in a fa- 
mous letter to the editor entitled "GOTO 
statements considered harmful" (8) in 
1968, which initiated' considerable con- 
troversy but which time and experience 
have pretty well settled. 

Structured programming. In spite of 
the controversy over GOTO's, the es- 
sence of structured programming is not 
the absence of GOTO's in programs but 
the presence of rigor in programming. 
This rigor is achieved by a so-called step- 
wise refinement process, which expands 
an action specification into a primitive 
sequential process of (smaller) action 
specifications, carried out repeatedly un- 
til actions of the programming language 
are at hand. Thus, beginning with an ini- 
tial action specification for a program as 
a whole, the program is designed, step- 
wise, in a hierarchy of refinements. 

A set of such primitives, given in flow 
chart and text form, is shown in Fig. 1. 
where S, T are actions (which may be 
further expanded in these same primi- 
tives) and B is a (Boolean) test. In illus- 
tration, after several expansions, a se- 
quential process might be defined by the 
program, in flowchart and text, shown 
in Fig. 2, where the text form has been 
broken into lines and indented to show 
the structure of the expansions. It should 
be added that the foregoing gives the 
form but not the substance of good 
design. A good design, not only con- 
forms but satisfies many additional 
criteria not easily stated here. But 
the form does keep the correctness 
proof size proportional to the program 
size. 

The principal reason for the con- 
troversy about structured programming 
was the question of whether such a small 
set of simple primitives was adequate to 
achieve sequential control. At the time, 
there was little discipline in such control 
logic, because it was widely supposed 
that complexity was a necessity of good 
design. We now know better. 

Structured programming has already 
found important practical applications in 
software development, as discussed by 
Baker (9). There is already a widespread 
acceptance of the idea in industry and 
government, even though practice often 
lags behind intentions. 

An axiomatic basis for sequential 
processes. Hoare (10) provided an ex- 
plicit confirmation of Dijkstra's objec- 
tives in structured programming by pro- 
viding an axiomatic basis for proving the 
correctness of each of the primitive se- 
quential processes proposed by Dijkstra. 
Thus, at each stepwise refinement, a 
standard procedure can be invoked, at 
18 MARCH 1977 

if Bl 
then 

Sl; 
while B2 

S2 
od 

else 
if B3 

theh 
S3 

else 
S4 

fi; 
S5 

fi 

Fig. 2. A simple structured program. 

any level of formality desired or appro- 
priate. Specifically, Hoare introduced 
the idea of a "precondition" P, and 
"postcondition" Q for an action S, writ- 
ten P {S} Q, and interpreted "if P holds 
and sequential action S is carried out 
(and terminates), then Q will hold." 
Now, the primitive sequential processes 
above can be axiomatized as follows: 

sequence 
P {S}Q A Q {} R => P{S+T} R 

ifthenelse 
P A B {S} R A P A - B {T} R => 

P {if B then S else T fi} R 

whiledo 
P A B {S} P = >P {while B 

do S od} P A - B 

The last axiom, for the whiledo, is espe- 
cially illuminating, because it identifies a 
condition P, called an "invariant" (by 
reason of the persistence of P in the an- 
tecedent), which can be used to prove 
looping programs correct. It is now easy 
to see that Dijkstra's claim for the proof 
sizes of structured programs is correct- 
the form of the proof is independent of 
the depth of the hierarchy at each refine- 
ment step. The practical possibilities of 
proof of correctness have led in turn to 
programming language ideas which de- 
scribe not only code but proof, as shown 
by Wegbreit (11). 

More recently, Dijkstra (12) has used 
the foregoing ideas of Hoare to introduce 
the concept of "predicate transformers" 
for sequential process design. In brief, 
for each Q, S defines a "weakest pre- 
condition" P, such that P {S} Q, so that S 
can be interpreted as a predicate trans- 
former (which transforms Q into P). 
Such a weakest precondition always ex- 
ists, because, regarding P, Q as predi- 
cate valued actions, the sequence S ;Q is, 
in fact, the weakest precondition P for 
which P {S} Q. Now, the condition re- 
quired of a sequential process must be 

known in order to design it, but this is 
postcondition Q. So the sequential ac- 
tion S which transforms Q into a suitable 
predicate P can be determined as a step- 
wise refinement. Dijkstra showed how 
each primitive sequential process be- 
haves as a predicate transformer and 
thus laid the groundwork for a method 
for deriving programs which are auto- 
matically correct (12). For example, de- 
noting the predicate transformer wp 
(weakest precondition), 

P = wp(S, Q) 

then the transformer for the sequence 
S ;T is 

wp("S;T", Q) = wp(S, wp(T, Q)) 

Gries (13) has given an elementary expo- 
sition of the use of predicate trans- 
formers. 

Structured programs and function al- 
gebras. A sequential process S defines a 
"program function" 

s = {(x, y) I y = S(x)} 

and a Boolean test B defines a predicate 
function 

b = {(x, y) | y = B(x)} 

The primitive sequential processes ax- 
iomatized above can be identified with 
operations in an algebra of functions, 
namely, 

sequence operation 
s;t = {(x, y) | 3z (z = s(x) A y = t(z))} 

ifthenelse operation 
if b then s else tfi = {(x, y) I (b(x) A 

y = s(x)) V (-' b(x)A y = t(x))} 

whiledo operation 
while b do s od = {(x, y) I k >- 0 
(Vj, 0 <k, 

(b(xJ(x))) A y = sk(x) A-b(y))} 

(in the whiledo, k is an "iteration 
count," b must test true up to k - 1, y 
must be the result of k iterations of s, and 

1203 



b must test false to terminate). Here, the 
sequential control symbols; if, then, 
. . ., od are infix, prefix, postfix oper- 
ators (just like +, -, and other symbols 
in ordinary algebras), with functions as 
operands and results. A structured pro- 
gram corresponds to a compound ex- 
pression in such an algebra of functions, 
and the various convenient properties of 
hierarchical structure, indentation capa- 
bilities, and subprogram nesting are all 
seen to be a result of this algebraic struc- 
ture. 

The stepwise refinement process can 
be formulated as solving function equa- 
tions, one of 

r = s;t 
r = if b then s else tfi 
r = while b do s od 

in which r is given and b, s, t are to be 
determined. Closed-form solutions can 
be given for each of these equations, as 
shown by Mills (14). For example, the 
solution for the whiledo equation has a 
classical mathematical form-an exis- 
tence condition (on r), and a single pa- 
rameter family of solutions (with a func- 
tion as the parameter). Reynolds and 
Yeh (15) give another view of programs 
which compute functions by induction. 

Process synchronization. Each hard- 
ware device in a computing system oper- 
ates asynchronously with every other 
unit, so that signaling and waiting are 
practical necessities in their coordina- 
tion, that is, their harmonious coopera- 
tion as sequential processors. In this way 
card readers, printers, tape units, and 
logical processors can all cooperate in a 
single coherent operation, even though 
each device operates at quite different 
and mutually unpredictable rates. For 
example, a central computer can request 
action from a card reader, continue some 
calculations, and be interrupted when 
the card reader has completed its opera- 
tion. 

Dijkstra showed how the necessity of 
programming asynchronous processors 
could be converted into a powerful soft- 
ware design technique, by organizing an 
entire system as a "society of sequential 
processes, progressing with undefined 
speed ratios" (16, p. 343). Such sequen- 
tial processors are not tied to spe- 
cific hardware devices (although each 
asynchronously operating device defines 
one or more sequential processes in a 
natural way) but are used to organize (di- 
vide and conquer) more complex pro- 
cessing activity into a set of simpler ones 
which are coupled through synchro- 
nizing primitives called "semaphores." 
Semaphores play two distinct roles: (i) 

1204 

the mutual exclusion of sequential pro- 
cesses when any one of them is per- 
forming a critical task, for example, up- 
dating a commonly used record, and (ii) 
providing synchronization signals to one 
another. The use of semaphores permits 
proof of cooperation among sequential 
processes, such as guaranteed progress 
(absence of deadlock) to goals and integ- 
rity of data common to the processes, as 
shown by Dijkstra (17), Habermann (18), 
and Hoare (19). 

Brinch Hansen (20) and Hoare (21) 
have further developed the synchro- 
nization of sequential processes through 
program units called "monitors," which 
led to methods for extending Hoare's ax- 
iomatic treatment of sequential pro- 
cesses to axioms for the synchronization 
and exclusion of cooperating processes. 
Howard (22) and Owicki and Gries (23) 
have expanded on this treatment. 

Abstract machines. The organization 
of a sequential process into a hierar- 
chical structure through stepwise refine- 
ment is a powerful abstraction. The addi- 
tional synchronization of several sequen- 
tial processes into a single coherent 
superprocess is even more powerful and 
brings the ability to organize any system 
of people and hardware into harmonious 
cooperation. First, however, let us con- 
sider only hardware, in order to develop 
the idea more simply. 

A number of investigators, beginning 
with Parnas (24), Liskov and Zilles (25), 
and Wulf et al. (26), have observed that 
the organization of software systems can 
be improved in clarity and reliability if 
certain data and programs are organized 
as "data abstractions," namely, as soft- 
ware-defined finite state machines, 
which are "black boxes" to their users. 
For example, such an abstraction could 
behave as a first in, first out queue 
through a set of external commands, 
with the internal organization of the 
queue hidden from the user. An advan- 
tage of this arrangement is that the 
queuing mechanism can be entirely 
changed without affecting the rest of the 
programs that make use of it. Another 
useful and common abstraction is a card 
reader, a software-hardware machine 
which operates asynchronously with a 
using process. 

In fact, I will use the term "abstract 
machine" to mean any software-hard- 
ware-defined finite state machine. The 
implementation of an abstract machine is 
done in only one way-by means of a so- 
ciety of cooperating sequential pro- 
cesses, each of which may employ ab- 
stract machines in turn. Now it is easy to 
see that the recursive use of abstract ma- 

chines allows us to explain and design 
the largest of software systems. But, 
first, there is a lesson in hardware ma- 
chines. 

A well-designed and documented 
hardware machine has the following 
properties, as noted by Habermann et al. 
(27) in general: (i) a full specification of 
its legal (meaningful) operations, (ii) the 
detection of illegal requests for opera- 
tions and a description of the response 
taken to them, and (iii) the guarantee that 
illegal requests do not damage the ma- 
chine, that is, do not prevent the ma- 
chine from operating correctly [as de- 
fined by properties (i) and (ii)] if restart- 
ed. Furthermore, even though the timing 
specifications of operations may be only 
approximate (as a result, for example, of 
mechanical variances), at the completion 
of any logical operation the new state of 
the machine should be specified pre- 
cisely. We should expect no less from an 
abstract machine. 

The idea of abstract machines makes 
possible the development of hierarchies 
and levels of abstractions in software de- 
sign. A software system can be designed 
as a set of harmoniously cooperating se- 
quential processes, which have powerful 
abstract machines at their disposal. Each 
of these abstract machines can in turn be 
designed as a new set of harmoniously 
cooperating sequential processes, with 
simpler abstract machines being used un- 
til hardware machines are reached. For 
example, an airlines reservation soft- 
ware-hardware system can be designed 
as a cooperating set of abstract termi- 
nals, an abstract control program, and an 
abstract data management system. An 
abstract terminal, in turn, can be de- 
signed as a combination of a cooperating 
abstract keyboard, an abstract display, 
and abstract local data. This whole soft- 
ware-hardware system then becomes it- 
self an abstract machine for a system of 
people and machines that can deal with 
the public. 

References 

1. E. W. Dijkstra, On a Methodology of Design 
(MC-25 Informatica Symposium, Mathematical 
Centre Tracts, Amsterdam, 1971). 

2. B. W. Boehm, IEEE Trans. Comput. C-25 (No. 
12), 1226 (1976). 

3. H. D. Mills, IEEE Trans. Software Eng. SE-2 
(No. 4), 265 (1976). 

4. F. P. Brooks, The Mythical Man-Month: Essays 
on Software Engineering (Addison-Wesley, 
Reading, Mass., 1975). 

5. H. D. Mills, On the Development of Systems of 
People and Machines (Lecture Notes in Com- 
puter Science: 23, Programming Methodology, 
Springer-Verlag, Berlin, 1975). 

6. E. K. Yasaki and A. Pantages, Datamation 22 
(No. 9), 91 (1976). 

7. 0. J. Dahl et al., Structured Programming 
(Academic Press, New York, 1972). 

8. E. W. Dijkstra, Commun. Assoc. Comput. 
Mach. 11 (No. 3), 147 (1968). 

9. F. T. Baker, Assoc. Comput. Mach. SIGPLAN 
Notic. 10, 172 (June 1975). 

SCIENCE, VOL. 195 



10. C. A. R. Hoare, Commun. Assoc. Comput. 
Mach. 12 (No. 10), 576 (1970). 

11. B. Wegbreit, IEEE Trans. Software Eng., in 
press. 

12. E. W. Dijkstra, A Discipline of Programming 
(Prentice-Hall, Englewood Cliffs, N.J., 1976). 

13. D. Gries, IEEE Trans. Software Eng. SE-2 (No. 
4), 238 (1976). 

14. H. D. Mills, Commun. Assoc. Comput. Mach. 
18 (No. 1), 43 (1975). 

15. C. Reynolds and R. T. Yeh, IEEE Trans. Soft- 
ware Eng. SE-2 (No. 4), 244 (1976). 

10. C. A. R. Hoare, Commun. Assoc. Comput. 
Mach. 12 (No. 10), 576 (1970). 

11. B. Wegbreit, IEEE Trans. Software Eng., in 
press. 

12. E. W. Dijkstra, A Discipline of Programming 
(Prentice-Hall, Englewood Cliffs, N.J., 1976). 

13. D. Gries, IEEE Trans. Software Eng. SE-2 (No. 
4), 238 (1976). 

14. H. D. Mills, Commun. Assoc. Comput. Mach. 
18 (No. 1), 43 (1975). 

15. C. Reynolds and R. T. Yeh, IEEE Trans. Soft- 
ware Eng. SE-2 (No. 4), 244 (1976). 

16. E. W. Dijkstra, Commun. Assoc. Comput. 
Mach. 11 (No. 5), 341 (1968). 

17. . , in Programming Languages, F. Genuys, 
Ed. (Academic Press, New York, 1968). 

18. A. N. Habermann, Commun. Assoc. Comput. 
Mach. 15 (No. 3), 171 (1972). 

19. C. A. R. Hoare, in Operating Systems Tech- 
niques, C. A. R. Hoare and R. H. Perott, Eds. 
(Academic Press, New York, 1973). 

20. P. Brinch Hansen,Assoc. Comput. Mach. Com- 
put. Surv. 4 (No. 4), 223 (1973). 

21. C. A. R. Hoare, Commun. Assoc. Comput. 

16. E. W. Dijkstra, Commun. Assoc. Comput. 
Mach. 11 (No. 5), 341 (1968). 

17. . , in Programming Languages, F. Genuys, 
Ed. (Academic Press, New York, 1968). 

18. A. N. Habermann, Commun. Assoc. Comput. 
Mach. 15 (No. 3), 171 (1972). 

19. C. A. R. Hoare, in Operating Systems Tech- 
niques, C. A. R. Hoare and R. H. Perott, Eds. 
(Academic Press, New York, 1973). 

20. P. Brinch Hansen,Assoc. Comput. Mach. Com- 
put. Surv. 4 (No. 4), 223 (1973). 

21. C. A. R. Hoare, Commun. Assoc. Comput. 

Mach. 17 (No. 10), 548 (1974); ibid. 18 (No. 2), 
95 (1975). 

22. J. H. Howard, ibid. 19 (No. 5), 273 (1976). 
23. S. Owicki and D. Gries, ibid., p. 279. 
24. D. L. Parnas, ibid. 15 (No. 5), 330 (1972). 
25. B. H. Liskov and S. Zilles, IEEE Trans. Soft- 

ware Eng. SE-1 (No. 1), 7 (1975). 
26. W. A. Wulf, R. L. London, M. Shaw, ibid. SE-2 

(No. 4), 253 (1976). 
27. A. N. Habermann, L. Flon, L. Cooprider, Com- 

mun. Assoc. Comput. Mach. 19 (No. 5), 266 
(1976). 

Mach. 17 (No. 10), 548 (1974); ibid. 18 (No. 2), 
95 (1975). 

22. J. H. Howard, ibid. 19 (No. 5), 273 (1976). 
23. S. Owicki and D. Gries, ibid., p. 279. 
24. D. L. Parnas, ibid. 15 (No. 5), 330 (1972). 
25. B. H. Liskov and S. Zilles, IEEE Trans. Soft- 

ware Eng. SE-1 (No. 1), 7 (1975). 
26. W. A. Wulf, R. L. London, M. Shaw, ibid. SE-2 

(No. 4), 253 (1976). 
27. A. N. Habermann, L. Flon, L. Cooprider, Com- 

mun. Assoc. Comput. Mach. 19 (No. 5), 266 
(1976). 

Human Performance Considerations 
in Complex Systems 

H. 0. Holt and F. L. Stevenson 

Human Performance Considerations 
in Complex Systems 

H. 0. Holt and F. L. Stevenson 

Acceptable human performance in 
complex systems depends upon precise 
human-machine interaction. Such inter- 
action is the focus of attention of design 
engineers and computer programmers, 
for exaniple, on the one hand, and of hu- 
man performance psychologists on the 
other. The meaning and extent of that in- 
teraction has evolved and expanded over 
the years. We now commonly find com- 
puters of various sizes on the machine 
side of the human-machine interface, 
and their presence has changed human 
performance considerations markedly. 
On the human side we have seen an ac- 
celerating emphasis upon man as an in- 
formation processor, thus adding many 
considerations to the older-but per- 
sistent-anthropomorphic concerns. 

In this article we review the "human 
factors engineering" field briefly, and 
then discuss in some detail the require- 
ments that computers have put on people 
and human performance technology in 
computer-based systems. For examples, 
and in the citation of solutions, we draw 
heavily upon our own experience in the 
Bell system. 

There have been human-machine in- 
teraction concerns of a sort ever since 
primitive man first extended his own 
abilities with simple weapons and tools. 
In more recent history the industrial rev- 
olution accelerated greatly the transfer 

Acceptable human performance in 
complex systems depends upon precise 
human-machine interaction. Such inter- 
action is the focus of attention of design 
engineers and computer programmers, 
for exaniple, on the one hand, and of hu- 
man performance psychologists on the 
other. The meaning and extent of that in- 
teraction has evolved and expanded over 
the years. We now commonly find com- 
puters of various sizes on the machine 
side of the human-machine interface, 
and their presence has changed human 
performance considerations markedly. 
On the human side we have seen an ac- 
celerating emphasis upon man as an in- 
formation processor, thus adding many 
considerations to the older-but per- 
sistent-anthropomorphic concerns. 

In this article we review the "human 
factors engineering" field briefly, and 
then discuss in some detail the require- 
ments that computers have put on people 
and human performance technology in 
computer-based systems. For examples, 
and in the citation of solutions, we draw 
heavily upon our own experience in the 
Bell system. 

There have been human-machine in- 
teraction concerns of a sort ever since 
primitive man first extended his own 
abilities with simple weapons and tools. 
In more recent history the industrial rev- 
olution accelerated greatly the transfer 

of work functions from people to ma- 
chines and complicated the human-ma- 
chine interface problems considerably. 

Human Factors Engineering 

It is generally agreed that World War 
II marked the beginning of a professional 
approach to what came to be called hu- 
man factors engineering, that is, a sys- 
tematic approach to studying problems 
of human-machine interaction and to ar- 
riving at practical solutions on a scientif- 
ic basis. Before the war, going back into 
the late 19th century, systematic work 
had been done by psychologists, but it 
tended to focus upon selecting or train- 
ing people to interact with machines. But 
the tremendous industrial and military 
expansion brought on by World War II, 
and the greatly increased complexity of 
the weapons systems being produced, 
complicated human-machine interaction 
considerably, so that the selection and 
training approach no longer was suf- 
ficient. For example, it was a simple mat- 
ter to get a relatively small number of 
men to fly the slow uncomplicated fight- 
er aircraft of World War I as compared 
to getting thousands of men to perform 
satisfactorily in the high performance 
P-38's and P-5 l's of World War II. Thus, 
a recognized professional specialty, usu- 
ally known as human factors psychology 
or human engineering, was spawned. 

Since human factors psychology came 
into being during World War II, it is to be 

of work functions from people to ma- 
chines and complicated the human-ma- 
chine interface problems considerably. 

Human Factors Engineering 

It is generally agreed that World War 
II marked the beginning of a professional 
approach to what came to be called hu- 
man factors engineering, that is, a sys- 
tematic approach to studying problems 
of human-machine interaction and to ar- 
riving at practical solutions on a scientif- 
ic basis. Before the war, going back into 
the late 19th century, systematic work 
had been done by psychologists, but it 
tended to focus upon selecting or train- 
ing people to interact with machines. But 
the tremendous industrial and military 
expansion brought on by World War II, 
and the greatly increased complexity of 
the weapons systems being produced, 
complicated human-machine interaction 
considerably, so that the selection and 
training approach no longer was suf- 
ficient. For example, it was a simple mat- 
ter to get a relatively small number of 
men to fly the slow uncomplicated fight- 
er aircraft of World War I as compared 
to getting thousands of men to perform 
satisfactorily in the high performance 
P-38's and P-5 l's of World War II. Thus, 
a recognized professional specialty, usu- 
ally known as human factors psychology 
or human engineering, was spawned. 

Since human factors psychology came 
into being during World War II, it is to be 

expected that it would continue to thrive 
in a military environment after the end 
of that war. The Army, Navy, and Air 
Force all established substantial centers 
for the study and application of this dis- 
cipline, and many of them still exist 
today. Human factors practitioners 
spread into the industries that supplied 
military equipment and systems. There 
was a particularly large concentration in 
the aerospace industry. The movement 
also took hold in many nonmilitary fields 
such as transportation, telephony, and 
occupational safety. 

In 1953, Paul Fitts and others typified 
the work being done in the 1940's and 
1950's as follows: "In the design of 
equipment, human engineering places 
major emphasis upon efficiency as meas- 
ured by speed and accuracy of human 
performance in the use of the equipment. 
Allied with efficiency are the safety and 
comfort of the operator. The successful 
design of equipment for human use re- 
quires consideration of the man's basic 
characteristics, among them his sensory 
capacities, his muscular strength and 
coordination, his body dimensions, his 
perception and judgment, his native 
skills, his capacity for learning new 
skills, his optimum work load, and his 
basic requirements for comfort, safety, 
and freedom from environment stress" 
(1). 

Thus traditional human factors engi- 
neering concerns itself with data gather- 
ing and experimentation meant to yield 
precise information about human capa- 
bilities. With such information, ma- 
chines can be built to fit humans. For ex- 
ample, studies revealed design require- 
ments for visual displays of under- 
standable information so that correct 
decisions or control actions can be made 
without delay. Comfortable physical fit 
between man and machine can be estab- 
lished with the use of such information 
as the average human's physical size, 
strength, and reach. This information 
has been stored in handbooks for the use 
of equipment designers and for human 
factors personnel who work with equip- 
ment designers. 

1205 

expected that it would continue to thrive 
in a military environment after the end 
of that war. The Army, Navy, and Air 
Force all established substantial centers 
for the study and application of this dis- 
cipline, and many of them still exist 
today. Human factors practitioners 
spread into the industries that supplied 
military equipment and systems. There 
was a particularly large concentration in 
the aerospace industry. The movement 
also took hold in many nonmilitary fields 
such as transportation, telephony, and 
occupational safety. 

In 1953, Paul Fitts and others typified 
the work being done in the 1940's and 
1950's as follows: "In the design of 
equipment, human engineering places 
major emphasis upon efficiency as meas- 
ured by speed and accuracy of human 
performance in the use of the equipment. 
Allied with efficiency are the safety and 
comfort of the operator. The successful 
design of equipment for human use re- 
quires consideration of the man's basic 
characteristics, among them his sensory 
capacities, his muscular strength and 
coordination, his body dimensions, his 
perception and judgment, his native 
skills, his capacity for learning new 
skills, his optimum work load, and his 
basic requirements for comfort, safety, 
and freedom from environment stress" 
(1). 

Thus traditional human factors engi- 
neering concerns itself with data gather- 
ing and experimentation meant to yield 
precise information about human capa- 
bilities. With such information, ma- 
chines can be built to fit humans. For ex- 
ample, studies revealed design require- 
ments for visual displays of under- 
standable information so that correct 
decisions or control actions can be made 
without delay. Comfortable physical fit 
between man and machine can be estab- 
lished with the use of such information 
as the average human's physical size, 
strength, and reach. This information 
has been stored in handbooks for the use 
of equipment designers and for human 
factors personnel who work with equip- 
ment designers. 

1205 

Dr. Holt is director of the Human Performance 
and Support Center, and Mr. Stevenson is head of 
the Systems Training Department at Bell Laborato- 
ries, Piscataway, New Jersey 08854. 

18 MARCH 1977 

Dr. Holt is director of the Human Performance 
and Support Center, and Mr. Stevenson is head of 
the Systems Training Department at Bell Laborato- 
ries, Piscataway, New Jersey 08854. 

18 MARCH 1977 


