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Abstract. The sulfur found in coal stems in large part from sulfur inc 
the peat-forming stage. Ester sulfate (a carbon-oxygen-sulfur linkage) i 
tributor to the sulfur in peat and thus is an important determiner of the 
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forms of sulfur eventually found in coal. 

The high sulfur content of many coals 
restricts their use. Although various sul- 
fur forms in coal such as pyrite, sulfate, 
and total sulfur have been quantified, the 
organic sulfur in coal has not been char- 
acterized with respect to the type of 
bonding present. Organic sulfur can rep- 
resent a significant portion of the total 
sulfur and the total dry weight of coal. It 
accounts for over 50 percent of the total 
sulfur in many cases, and in Rasa coal or- 
ganic sulfur represents 11 percent of the 
dry weight (1). Sulfur in coal is difficult 
to characterize because of the consid- 
erable polymeric and aromatic matrix of 
coal. 

The sequence peat --> lignite -> bitu- 
minous coal -> anthracite coal is the pri- 
mary metamorphic progression in coalifi- 
cation (2). We report here on an investi- 
gation of the incorporation of organic 
sulfur in the peat-forming stage. Peat- 
forming systems in the Okefenokee 
Swamp, Georgia, and the Everglades, 
Florida, were selected as suitable mod- 
em progenitors of coal (3). 

A peat-forming system is a dynamic 
system composed of a living plant com- 
munity, surface litter, water, minerals, 
microorganisms, burrowing animals, and 
peat. Peat can be thought of as a highly 
organic soil. Earlier studies on organic 
sulfur in inorganic soils have led to the 
characterization of two forms of organic 
sulfur: (i) a carbon-sulfur linkage such as 
that found in sulfur-containing amino 
acids (such as cysteine) and hetero- 
cyclics (such as thiophenes) and (ii) a car- 
bon-oxygen-sulfur linkage (referred to as 
18 FEBRUARY 1977 
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The analysis of the ester sulfate con- 

tent of the peat samples was carried out 
on samples from which the sulfate and el- 
emental sulfur had been removed. The 
procedure developed by Freney was 
used (8), in which a reducing solution 
consisting of hydriodic acid, hypophos- 
phorous acid, and formic acid reduces 

:orporation at the sulfur to hydrogen sulfide (2). The re- 
s a major con- ducing solution used here will reduce all 
quantity and forms of sulfur except carbon-bonded 

sulfur. Nitrogen, in the Johnson-Nishita 
apparatus, carries the hydrogen sulfide 
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'hark River in to the ester sulfate content) and were 
the third site subtracted from the values of sulfur re- 
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solute values for ester sulfate. 

Table 1 shows the results of an analy- 
sis of two peat cores from the Okefe- 

* Total sulfur nokee Swamp and one from the Ever- 
A Ester sulfate 

glades; the values for total sulfur repre- 
sent the mean of individually determined 
peat levels from each profile. Figure 1 
shows the ester sulfate content of peat 
from the Little Shark marine site as a 
function of sediment depth; the total sul- 
fur content at the same site is plotted for 
comparison. 

The data reveal a number of points: (i) 
the total sulfur content of the marine 

-~ peat is considerably higher than that of 
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Table 1. Mean values for total and ester sulfate in three peat-forming areas. 

Percentage of sulfur Ester sulfate 
Sampling site (dry weight basis) as a percentage of 

Total Ester sulfate total sulfur 

Minnie's Lake (freshwater)* 0.19 0.047 24.73 
Chesser Prairie (freshwater)* 0.18 0.045 25.00 
Little Shark (marine)t 5.16 1.22 23.64 

*Mean of 5 samples. tMean of 14 samples. 
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ences in the total sulfur content between 
the two freshwater peats is quite small; 
(iii) ester sulfate represents approxi- 
mately 25 percent of the total sulfur; (iv) 
there is little difference between the 
freshwater and marine peats in the ester 
sulfate content as a percentage of the to- 
tal sulfur; (v) the ester sulfate content in- 
creases with the depth of sample; and 
(vi) the ester sulfate content closely par- 
allels the carbon-bonded sulfur and the 
total sulfur content as a function of 
depth. 

It is difficult to hypothesize which nat- 
urally occurring compounds would be 
likely to have ester sulfate linkages. Es- 
ter sulfate linkages in substances such as 
choline sulfate, fucoidan, and chondroi- 
tin sulfate have been reported in various 
organisms and may eventually contrib- 
ute ester sulfate to the sediment upon the 
death of the organism. Organic matter is 
not readily degraded in a water-logged 
swamp-marsh environment, and thus lig- 
nin-derived heteropolycondensates such 
as humic and fulvic acids can accumu- 
late. These substances are known for 
their relatively high phenolic content (9); 
some of the phenolic groups may react 
with various sulfur forms to produce es- 
ter sulfate linkages. Sugars have been ex- 
tracted from humic and fulvic acids, and 
these moieties may contain ester sulfate 
linkages (10). Thus ester sulfate may en- 
ter the sediment directly from the re- 
mains of certain organisms or it may be 
formed in situ if certain reactive chem- 
ical groups and sulfate are present. 

Since peat is the first member of the 
coalification sequence, the relatively 
high values of ester sulfate in peat are sig- 
nificant. Ester sulfate incorporated in the 
peat-forming stage can be carried 
through the other stages of coal forma- 
tion, or it can be added during sub- 
sequent stages. As far as we know, the 
ester sulfate content of lignites and bitu- 
minous and anthracite coals has not 
been investigated. Ester sulfate may be 
viewed as the form in which sulfate is sta- 
bilized geochemically. When a sediment 
is buried and becomes increasingly an- 
aerobic, sulfate becomes an important 
source of oxygen for microbial metabo- 
lism. Hydrogen sulfide from the reduc- 
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tion of sulfate can then react with organ- 
ic matter to form organic sulfur linkages. 
In a laboratory experiment gaseous hy- 
drogen sulfide was shown to react with 
fatty aldehydes to form a variety of or- 
ganic sulfur compounds (11). Thus, it is 
apparent that ester sulfate can be re- 
worked in the sediment in such a way 
that it contributes to the total sulfur con- 
tent in coal. 
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One of the classic unsolved problems 
in paleobiology is the question of the ori- 
gin of the Metazoa. In recent years, stud- 
ies of megascopic fossils from strata of 
latest Precambrian and earliest Cam- 
brian age have provided much new infor- 
mation regarding early stages of meta- 
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zoan diversification (1). These studies 
suggest that megascopic invertebrates 
[and apparently also megascopic algae 
(2, 3)] may have first appeared about 650 
million years ago. Despite this recent 
progress, however, and although algal 
microbiotas of the earlier Precambrian 
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Chitinozoans from the Late Precambrian Chuar Group 
of the Grand Canyon, Arizona 

Abstract. Carbonaceouts shales of the late Precambrian Chuar Group of the Grand 
Canyon, Arizona, contain abundant and well-preserved chitinozoans. The occur- 
rence of these distinctive, tear- and flask-shaped microfossils, the oldest chitino- 
zoans now known and the first to be reported from the Precambrian, seems to sug- 
gest that heterotrophic protists (or primitive metaozoans) were extant at least as 
early as about 750 ? 100 million years ago. 
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