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Anthropogenic CO Emissions: Implications for the 

Atmospheric CO-OH-CH4 Cycle 

Abstract. Present anthropogenic emissions of CO are apparently large enough to 
perturb the natural CO-OH-CH4 cycle, which plays a crucial role in the self-cleans- 
ing processes in the troposphere. A significant increase in global concentrations of 
CO, CH4, CH2Cl, and other trace gases may result from a decrease in the OH con- 
centration caused by continued CO emissions. Even if the CO emissions were main- 
tained at the present rate, increases in CO and CH4 by the year 2025 might be as 
large as 50 and 25 percent, respectively. The time constants associated with the per- 
turbations of the CO-OH-CH4 cycle are of the order of a few decades. Perturbation 
of this cycle may also indirectly affect stratospheric chemistry. 

The importance of the hydroxyl radi- 
cal (OH) in atmospheric chemistry was 
first recognized by Bates and Nicolet (1) 
and by Bates and Witherspoon (2). Many 
investigators (3) now emphasize that OH 
plays a crucial role in many tropospheric 
self-cleansing processes and controls the 
concentrations of many less soluble 
trace gases such as CH4, CO, H2S, SO2, 
CH3C1, CHxCl,Fz, and CH,Br,. 

In this report, the effects of increasing 
anthropogenic emissions of CO on tro- 
pospheric OH and the subsequent evolu- 
tion of the CO-OH-CH4 cycle are exam- 
ined. It is assumed here that the reac- 
tions 

OH + CH4 -> CH3 + H20 (1) 

and 

OH + CO -CO2 + H (2) 

are the principal sinks for CH4 and CO 
(3, 4) and that subsequent oxidation of 
CH3 provides the principal natural 
source of CO. Moreover, reactions 1 and 
2 are the major loss processes for tropo- 
spheric OH (5). A simplified odd hydro- 
gen (H, OH, HO2, H202) cycle is shown 
in Fig. 1. Present CO emissions due to 
combustion of fossil fuel have been esti- 
mated as approximately 4 x 108 metric 
tons per year (6), compared with an esti- 
mated natural production of about 1 to 
3 x 109 metric tons per year (6, 7), pri- 
marily from the oxidation of CH4 (reac- 
tion 1). An increase in the global CO con- 
centration may suppress the tropospher- 
ic OH concentration (4). 

If CH4 were initially in a steady state, 
then the height-integrated removal rate, 
denoted by 

L(CH4) = | k[OH][CH4]dz (3) 
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would balance the mean surface flux, 
0(CH4), a quantity presumably indepen- 
dent of OH perturbations. It follows that 
any decrease in tropospheric OH would 
lead to a net increase in CH4 in the atmo- 
sphere as long as L(CH4) is less than 
j(CH4). It is argued here that, even if the 
anthropogenic source levels off in the fu- 
ture, the time constant for CH4 to ap- 
proach a new steady state would be on 
the order of a few decades, much longer 
than its residence time of about 3 to 7 
years (3, 7). This is partially due to both 
the subsequent increase in the natural 
source of CO and the further decrease in 
OH as the quantity L(CH4) approaches 
f(3CH4). 

Fig. 1. Simplified odd 
hydrogen cycle in the 
lower troposphere. 
The concentration 
given in each box is / 
in molecules per cub- 
ic centimeter. Reac- 
tion rates (106 cm-3 
sec-') at 1 km are la- 
beled on each path. 
Bold arrows denote ma- 
jor tropospheric path- 
ways. The rate of the .. r.l 
reaction HO2 + H02 OH 

-- H202 + 02 should 6 
^ 

be 1.2 instead of 0.6 if 
it is interpreted as a 
loss process for HO2. 
Likewise, the rate of \ \ 
the reaction H202 + \ \ 
hv -> 20H should be \ \ . 

0.15 if it is interpreted 
as a loss process for 
H202. Reactions in- \ 
volving CH20 and o\ 
CH302H are relative- 
ly unimportant and 'o, 
are ignored in this 
simple scheme. 

Three models for different future CO 
emissions were chosen for detailed stud- 
ies. Concentrations of HO,, CO, NOX, 
and CH4 were computed in every time 
step by solving the appropriate one-di- 
mensional, time-dependent coupled dif- 
fusion equations (8-10). The results are 
summarized in Fig. 2, a through c. The 
increase in the lifetime of CH4 (11) that 
results from the corresponding decrease 
of the OH concentration in each model is 
shown in Fig. 2a. Figure 2a presents 
some details of the results obtained with 
model A. The quantity L(CH4) increases 
after the year 1971. This would imply a 
corresponding increase in CO emission. 
The relative increase in global CO and 
CH4 concentrations is shown in Fig. 2, b 
and c. In both models A and A' (constant 
CO release after 1971), the global CO 
and CH4 concentrations require an exten- 
sive period of time to attain their new 
steady levels. The continued growth of 
CO and CH4 after 1971 is a consequence 
of the inertia and the strong coupling as- 
sociated with the atmospheric CO-OH- 
CH4 cycle. It is expected that much 
larger increases in CO and CH4 concen- 
trations would result in continued 
growth of CO emissions (model C and 
C'). Should a sharp drop in CO emission 
occur (model B), the CO and CH4 con- 
centrations are not expected to fall close 
to their levels in the 1950's. 

The calculated present global CO con- 
centration is about 20 to 38 percent high- 
er than that in the 1950's; the correspond- 
ing CH4 level is currently about 10 to 20 
percent higher. The precise magnitude of 
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increase depends primarily on the as- 
sumed surface flux of CH4. The predict- 
ed CO increase is not inconsistent with 
CO data reported by Seiler (7), and the 
predicted CH4 increase may be substan- 
tiated or refuted by a long-term measure- 
ment program. 

An increase in the abundance of CH4 
associated with a decrease in tropospher- 
ic OH may have important effects; it may 
(i) increase stratospheric odd hydrogen 
(H, OH, HO2) and H20 abundances, 
which may affect stratospheric chem- 
istry; (ii) tie up more Cl radical through 
the reaction Cl + CH4 -> HCI + CH3 
(12), which could lead to an increased 
concentration of ozone if the Cl radical 
plays an important role in the ozone 
destruction process (13); and (iii) 
contribute to the atmospheric greenhouse 
effect because CH4 and stratospheric 
H20 have infrared absorption bands (14, 
15). 

A decrease in OH may also increase 
the abundance of a number of important 
trace gases such as H2S, CH3Cl, and 
CH3Br. Increasing the supply of these 
gases to the stratosphere could affect 
stratospheric ozone chemistry (16). It 
might also lead to a problem in dispos- 
ing of technological products such as 
CHF2C1, C2H3C13, and C2C14, which rely 
on tropospheric OH for their principal 
sinks. If an OH decrease results in a net 
depletion of stratospheric ozone, more 
ultraviolet radiation may reach the tro- 
posphere, leading to enhanced OH pro- 
duction through the reaction O('D) + 
H20 -- 20H, where O(D) is produced 
by photolysis of tropospheric ozone. 
However, if total ozone increased as a re- 
sult of decreasing tropospheric OH, then 
the OH concentration would be further 
suppressed. 

The major conclusions that can be 
drawn from the present study are: (i) pre- 

sent anthropogenic CO emissions are suf- 
ficiently large to perturb the global CO- 
OH-CH4 cycle; (ii) the time constants as- 
sociated with these perturbations are 
about 10 to 30 years, depending primari- 
ly on the assumed surface flux of CH4; 
(iii) changes in tropospheric OH may in- 
directly affect stratospheric ozone chem- 
istry, which could lead to either positive 
or negative feedback effects; and (iv) in- 
creasing amounts of CH4 and strato- 
spheric H20 may contribute to the atmo- 
spheric greenhouse effect. It seems clear 
that concern over anthropogenic CO 
emissions should be broadened to in- 
clude the possible impacts on the global 
tropospheric CO-OH-CH4 cycle. A long- 
term measurement program for atmo- 
spheric CO, CH4, and OH concentra- 
tions would be useful to validate pho- 
tochemical models of the troposphere. 

NIEN DAK SZE 
Environmental Research & Technology, 
Inc., Concord, Massachusetts 01742 

Fig. 2 (a) The lower part 1.7 17 
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pogenic CO releases. Emis- - 

sions of CO were assumed to 15 ---5 

be 400 x 106ton/year or 5.3 x c/ 
1010 cm-2 sec-1 in 1971. The 
growth rate for models A, B, E / 
and C was taken as 4 percent - / 
per year in the period 1940 _5 6 
through 1970 (17). For the 
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three models the assumed CO ( / 
emissions were: model A, zero a 
growth rate after 1971; model 5 

B, a 5 percent per year drop in 70 

the period 1971 through 1985 
and a 2 percent increase after 60 c A - 
1985 (17, 18); and model C, an / / 
indefinite 1.33 percent per 50 - / / / 
year increase after 1971. The / C 
lifetime (r) of CH4 was comput- - 40 / 
ed as discussed in (11). The /o 
global average OH concentra- C 30 A 

tions near the surface may be / --- -- 

inferred from r. The upper 20 

part shows the height-in- // 
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CH2 as a function of time 70 
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CH4. In models A, B, and o 0 
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Global CH4 increase computed with models of different CO emission rates and mean surface 
fluxes of CH4. The arrow indicates the year when CH4 doubling occurs in model C. 
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Origins of Sulfur in Coal: Importance of the 

Ester Sulfate Content of Peat 

Abstract. The sulfur found in coal stems in large part from sulfur inc 
the peat-forming stage. Ester sulfate (a carbon-oxygen-sulfur linkage) i 
tributor to the sulfur in peat and thus is an important determiner of the 

Origins of Sulfur in Coal: Importance of the 

Ester Sulfate Content of Peat 

Abstract. The sulfur found in coal stems in large part from sulfur inc 
the peat-forming stage. Ester sulfate (a carbon-oxygen-sulfur linkage) i 
tributor to the sulfur in peat and thus is an important determiner of the 
forms of sulfur eventually found in coal. 

The high sulfur content of many coals 
restricts their use. Although various sul- 
fur forms in coal such as pyrite, sulfate, 
and total sulfur have been quantified, the 
organic sulfur in coal has not been char- 
acterized with respect to the type of 
bonding present. Organic sulfur can rep- 
resent a significant portion of the total 
sulfur and the total dry weight of coal. It 
accounts for over 50 percent of the total 
sulfur in many cases, and in Rasa coal or- 
ganic sulfur represents 11 percent of the 
dry weight (1). Sulfur in coal is difficult 
to characterize because of the consid- 
erable polymeric and aromatic matrix of 
coal. 

The sequence peat --> lignite -> bitu- 
minous coal -> anthracite coal is the pri- 
mary metamorphic progression in coalifi- 
cation (2). We report here on an investi- 
gation of the incorporation of organic 
sulfur in the peat-forming stage. Peat- 
forming systems in the Okefenokee 
Swamp, Georgia, and the Everglades, 
Florida, were selected as suitable mod- 
em progenitors of coal (3). 

A peat-forming system is a dynamic 
system composed of a living plant com- 
munity, surface litter, water, minerals, 
microorganisms, burrowing animals, and 
peat. Peat can be thought of as a highly 
organic soil. Earlier studies on organic 
sulfur in inorganic soils have led to the 
characterization of two forms of organic 
sulfur: (i) a carbon-sulfur linkage such as 
that found in sulfur-containing amino 
acids (such as cysteine) and hetero- 
cyclics (such as thiophenes) and (ii) a car- 
bon-oxygen-sulfur linkage (referred to as 
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t where Tax- than the ester sulfate content) (2). Sul- 
nt in associa- fide values were significant in the sam- 
pH 4.0). The ples from the marine site (at least equal 
'hark River in to the ester sulfate content) and were 
the third site subtracted from the values of sulfur re- 

,ite Rhizopho- ducible by hydriodic acid to give the ab- 
solute values for ester sulfate. 

Table 1 shows the results of an analy- 
sis of two peat cores from the Okefe- 

* Total sulfur nokee Swamp and one from the Ever- 
A Ester sulfate 

glades; the values for total sulfur repre- 
sent the mean of individually determined 
peat levels from each profile. Figure 1 
shows the ester sulfate content of peat 
from the Little Shark marine site as a 
function of sediment depth; the total sul- 
fur content at the same site is plotted for 
comparison. 

The data reveal a number of points: (i) 
the total sulfur content of the marine 

-~ peat is considerably higher than that of 
8-0 --o0 the freshwater peats; thus, coals derived 

at basis (%) from near-marine and brackish environ- 

forms in peat ments would have considerably more sul- 
nt (Little Shark fur associated with them than coals from 

freshwater sites; (ii) the overall differ- 

8-0 --o0 the freshwater peats; thus, coals derived 
at basis (%) from near-marine and brackish environ- 

forms in peat ments would have considerably more sul- 
nt (Little Shark fur associated with them than coals from 

freshwater sites; (ii) the overall differ- 
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