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determined by some stochastic process, 
thenfi is viewed as the expected value of 
fi(t) over a randomly chosen interval (or 
at a randomly chosen point). In any case, 
we assume that the limits in Eq. 4 are 
well defined. 
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The concept of r and K strategies has 
been popular with ecologists for some 
time (1-6). The concept dates to a sugges- 
tion by Dobzhansky (1) that populations 
in frequently disturbed environments 
will tend to have higher maximum rates 
of increase r than will populations whose 
densities are more nearly constant. Con- 
versely, MacArthur (2) showed that in 
undisturbed environments phenotypes 
which can maintain denser equilibrium 
populations (that is, those with higher 
"carrying capacities" K) will be selec- 
tively favored. The idea that species can 
be classified in terms of their positions 
along an r-K continuum was first pro- 
posed by MacArthur and Wilson (3). 
This idea has since become the subject of 
considerable debate (4-8). 

We first develop a simple model of 
competition in a time-varying environ- 
ment. This model extends the Volterra 
(9) competitive exclusion proof to a cer- 
tain class of time-dependent environ- 
ments (10). We then use this model in dis- 
cussing the utility of r-K theory (3-6). 

Consider a set of m populations grow- 
ing according to the equations 

1 dNi 
N dNt = - yi F(N 1.. ,Nn,) - fi(t) I 

(1) 

for i = l,..,m. Here Ni is the density of 
population (haploid phenotype) i, ri is 
its maximum rate of increase, yi is a posi- 
tive constant, and t is time. All species 
are limited by the same "limiting fac- 
tor" F(N1,...,Nm) (11). The function 

F(N,,...N,m) is assumed to be an in- 
creasing function of the Ni, with 
F(O,...,O) = 0. The function F(N,,...,N) 
summarizes the effects of population den- 
sities on population growth rates; the val- 
ues of the yi reflect the sensitivities of the 
various phenotypes to these density ef- 
fects. The functions fi(t) are externally 
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imposed, time-varying rates of density- 
independent mortality (12). 

We inquire as to which phenotype is 
most fit. In other words, we ask: After a 
long time has elapsed (mathematically, 
as t -> x), will one phenotype come to 

predominate? And if so, which one? 
A straightforward extension of the 

Volterra (9) competitive exclusion proof 
yields the answer. Consider two pheno- 
types growing according to Eq. 1, which 
can be rearranged as 

- N, dt F(N1.,) - 
1 1 dN, + Af(t)= 

-F(N,...,N,,) (2) 

Since the right-hand sides of these equa- 
tions are equal, Eq. 2 can be combined 
and rearranged to yield 

dN _ dN2 

yiN1 Y2N2 

{[rl - fA(t)]/yl - [r2 - f2(t)]/y2} dt 

integration of which from time 0 to time 
r yields 

N1l',l(T) N_ 1 ((O) 

N2 1 2(T) N211Y2(O) 

exp r., - - j 
fi(t)dtl/y 

- 

r2 - f2(t)dt /y2 r (3) 
T 0 

We now define the average valuesfi of 
the removal functions fi(t) by 

f -^l' i T- 

7I 

iO ~fi(t)dt (4) 

If the removal function is periodic, fi is 
the average value of this function over 
one time period. Alternatively, if fi(t) is 
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The proof is extended to include all 
phenotypes by considering them pair- 
wise (9). As T - oc, that phenotype with 
the largest value of 

(ri - f)/yi (ri - f)/yi (5) (5) 

will become infinitely more common 
than any other phenotype. Since the to- 
tal density of all phenotypes must remain 
finite, only the most favored phenotype 
will be retained at substantial densities 
(provided ri > f and N,(O) 7 0 for that 
phenotype); all other phenotypes must 
approach extinction (13, 14). 

Equation 5 provides a useful focus for 
discussing the utility of r-K theory (3-6). 
We first identify 

m 
F(N,...,Nm) = E Ni 

i = N /=1 

the total density of all phenotypes, and 
yi = ri/Ki, where Ki is the carrying ca- 
pacity of phenotype i (15). With this iden- 
tification, which transforms Eq. 1 into 
time-dependent logistic equations (2, 3), 
we see from Eq. 5 that the phenotype 
with the largest value of 

K,(1 - f/ri) (6) 

will replace all others. 
Assume now that the various pheno- 

types do not differ in their susceptibility 
to externally imposed mortality, so that 
i = f for all i. Assume further that there 

exists some trade-off between the ability 
to reproduce at high population densities 
and the ability to reproduce at low den- 
sities. That is, assume that if phenotype 
A has higher fitness than phenotype B in 
one density range, then A will be less fit 
than B in the opposite density range. As 
a concrete example, let the admissible 
pairs of values ofri and Ki for the various 
phenotypes lie on the line defined by 

ri/;'max + Ki/Kmax = 1 

where rmax and Kmax are the largest pos- 
sible values of ri and Ki, respectively. In 
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this case, the best possible (optimal) 
phenotype will have values of ri and Ki 
given by 

ropt/rmax = (fVlmax)/ 

Kopt/Kmax = 1 - (rmax)1/2 

This example illustrates the posited 
trend (1-3), that in harsh (high f environ- 
ments, a large value of the intrinsic rate 
of increase r will be favored. Con- 
versely, large values of K will be favored 
in benign (low ) environments. 

Such an approach is a consistent exten- 
sion of standard r-K theory (3-6). The 
emphasis is on the trade-off between fit- 
ness in rarefied environments (r selec- 
tion) and fitness in saturated environ- 
ments (K selection). The choice of an r-K 
parameterization (that is, choosing to 
consider Eq. 6 rather than Eq. 5 as the 
basic relationship) focuses our attention 
on this one trade-off. 

Other trade-offs are also taking place, 
however. For example, if we write 
r = bi - di, where bi is the birth rate 
and di the death rate in the most favor- 
able rarefied circumstances (12), and sub- 
stitute this relationship into Eq. 5, we 
find that the phenotype with the largest 
value of 

(bi -- d - f)/,i (7) 

will replace all others. 
Equation 7 yields a different per- 

spective on what is evolutionarily impor- 
tant. In the r-K parameterization (Eq. 6), 
the fi were assumed to be given, exter- 
nally imposed death rates. But Eq. 7 em- 
phasizes the trade-off between birth rate 
bi, total average death rate di' = di + fi, 
and a parameter yi which reflects sensi- 
tivity to density effects. This parameter- 
ization focuses on the fact that the magni- 
tudes of the fi may not be characteristics 
of environment alone, but rather are 
characteristic of species-environment in- 
teractions. Desert annuals and cacti em- 
ploy strikingly different life-history strat- 
egies, even though faced with the same 

physical environment. 
The obvious importance of the trade- 

off between bi and di' led Hairston et al. 
(7) to suggest that "b and d selection" 
may be more fundamental than "r and K 
selection." Pianka (5) responded that the 
use of such a conceptual scheme would 
tend to mask the importance of density 
effects. Both positions have merit; what 
they ultimately show, however, is that 
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they ultimately show, however, is that 
no two-parameter trade-off scheme can 
be satisfactory in all cases. Trade-offs 
will occur simultaneously among fecun- 
dity and mortality rates at low popu- 
lation densities, the sensitivity of fecun- 
dity and mortality rates to density, resist- 
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ance to a harsh environment or to 
predators, adaptation to the pattern of 
fluctuations (16), and other traits which 
affect individual fitness; which of these 
trade-offs are most important will de- 
pend on the case at hand. 

These considerations lead us to sus- 
pect that, although r-K patterns do exist 
(4), the r-K trade-off might not be the 
most interesting, or most important, 
trade-off in many cases. An r-K contin- 
uum may provide one major axis along 
which life-history strategies can be ordi- 
nated. But a simple r-K continuum can- 
not provide an inclusive classification of 
life-history strategies. In many, if not 
most, cases, a detailed analysis of rele- 
vant ecological factors will be required 
to explain observed life-history patterns 
(8). 
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MICHAEL E. GILPIN 

Department of Biology, University of 
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Penguins are highly adapted to move- 
ment in water. Some species, however, 
spend a great deal of time walking about 
on land, and two antarctic species, the 
emperor penguin (Aptenodytes forsteri) 
and the Adelie penguin (Pygoscelis 
adeliae), are prodigious walkers. 

Every year, emperor penguins trek 
over the antarctic sea ice to their rooker- 
ies, which may be as much as 120 km 
from open water (1). Adelie penguins 
may walk more than 100 km from the sea 
to their rookeries (2), and there are rec- 
ords of Adelie tracks on the Ross Ice 
Shelf at least 100 km from the sea (3). In 
addition, Sladen and Ostenso have re- 
ported emperor tracks and what were 
probably Adelie tracks at least 300 km 
from the nearest known open water (4). 

Because both of these species must 
fast while they are out of the water, the 
energetic cost of walking is of special in- 

Penguins are highly adapted to move- 
ment in water. Some species, however, 
spend a great deal of time walking about 
on land, and two antarctic species, the 
emperor penguin (Aptenodytes forsteri) 
and the Adelie penguin (Pygoscelis 
adeliae), are prodigious walkers. 

Every year, emperor penguins trek 
over the antarctic sea ice to their rooker- 
ies, which may be as much as 120 km 
from open water (1). Adelie penguins 
may walk more than 100 km from the sea 
to their rookeries (2), and there are rec- 
ords of Adelie tracks on the Ross Ice 
Shelf at least 100 km from the sea (3). In 
addition, Sladen and Ostenso have re- 
ported emperor tracks and what were 
probably Adelie tracks at least 300 km 
from the nearest known open water (4). 

Because both of these species must 
fast while they are out of the water, the 
energetic cost of walking is of special in- 

9. V. Volterra, J. Conseil 3, 3 (1928). 
10. The class of models we consider are one-re- 

source Volterra (9) models in which the time 
dependence is added in the form of a density- 
independent mortality. Time dependence added 
in a different manner can result in the stable 
coexistence of two or more phenotypes. [See R. 
A. Armstrong and R. McGehee, Theor. Pop. 
Biol. 9, 317 (1976).] 

11. S. A. Levin, Am. Nat. 104, 413 (1970). 
12. We define ri to be the density-independent 

growth rate of phenotype i under the very best 
conditions (for phenotype i) that ever occur in 
the environment under consideration. Under 
these conditions, fi(t) 0. At all other times, 
fi(t) > 0. We further assume that the yi are time- 
invariant (10). 

13. Because we assumed a simple model of popu- 
lation growth and haploid genetics, we were able 
to obtain a simple relation (Eq. 5) for optimality. 
In more complicated models employing diploid 
genetics and age-structured populations (14), or 
in which growth rates are not linear functions of 
the limiting factor (R. A. Armstrong and R. 
McGehee, in preparation), or in which pheno- 
types are different enough that they are not all 
limited by the same limiting factor, polymor- 
phisms may be maintained [see also (10)]. 

14. J. Roughgarden, Ecology 52, 453 (1971); C. E. 
King and W. W. Anderson, Am. Nat. 105, 137 
(1971). 

15. That is, we define the carrying capacity Ki of 
phenotype i by Ki = ri/yi, with ri defined as in 
(12). 

16. In the simple Volterra model (Eq. 1), temporal 
fluctuations in mortality enter only as mean 
harshness f, rather than depending on the pat- 
tern of fluctuations. Our model thus suggests 
that in some cases "fluctuating" or "unpredict- 
able" environments may have evolutionary ef- 
fects similar to those produced by "harsh" con- 
stant environments. In many, if not most, cases, 
however, temporal patterns of harshness (sea- 
sonal temperature or rainfall patterns) will them- 
selves be of ecological and evolutionary impor- 
tance. 
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terest to our understanding of their life 
histories. Furthermore, because the mor- 
phology of penguins is very different 
from that of other birds in which the ener- 
getics of locomotion have been studied, 
we can test the generality of conclusions 
drawn about the energetics of locomo- 
tion in birds (5). 

We determined the energetic cost of 
walking in three species, emperor pen- 
guins (N =4), Adelie penguins (N = 3), 
and white-flippered penguins (Eudyptula 
albosignata) (N = 3) (6). (These species 
include the largest and the smallest pen- 
guins.) The number of experimental ses- 
sions with each species was 48, 56, and 
60, respectively. 

Oxygen consumption was determined 
while the penguins walked on a treadmill 
at various constant speeds and while 
they rested on the stationary tread. Ade- 
lie penguins would not remain still long 
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Terrestrial Locomotion in Penguins: It Costs More to Waddle 

Abstract. The energetic cost for walking is relatively higher for penguins than for 
other birds or for quadrupeds of similar body mass. The morphology of penguins 
seems to represent a compromise between aquatic and terrestrial locomotion where- 
in both energy economy and speed suffer when the birds move on land. 
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