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The thymus gland has long been sus- 
pected of playing an important role in 
myasthenia gravis (MG), a disorder mani- 
fested by weakness and fatigability of 
muscles. Clinical pathological evidence 
implicating the thymus in MG includes a 
high incidence of thymic hyperplasia (ap- 
proximately 65 percent) and neoplasia 
(approximately 10 percent) in patients 
with MG (1), and beneficial effects of thy- 
mectomy in many patients (2). Studies of 
acetylcholine receptors (AChR) provide 
further evidence for a possible link be- 
tween the thymus and MG. At present, 
the basic abnormality in MG is generally 
thought to be a reduction of available 
AChR at neuromuscularjunctions (3), re- 
sulting from an autoimmune attack di- 
rected against receptors (4, 5). Extracts 
of thymic tissue have now been shown to 
contain AChR (5, 6), suggesting that an 
autoimmune reaction against AChR 
might be initiated within the thymus 
gland itself. 

The source of AChR in the thymus is 
not yet known. In our study, we have 
considered the possibility that the AChR 

Fig. 1. Autoradiogram 't - : 
of rat thymic myotubes ]'! 
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beled a-bungarotoxin. 
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might be situated on "myoid" or mus- 
clelike cells, first described in the 
thymus in 1905 (7). Such cells are diffi- 
cult to study in situ, because they are em- 
bedded within the tissue mass of the 
thymus gland. We have therefore used 
tissue culture techniques (8) to obtain 
sufficient quantities of intact cells for 
characterization of certain of their physi- 
ological, pharmacological, and morpho- 
logical properties. The results indicate 
that muscle cultured from human or rat 

thymus is a rich source of AChR; fur- 
ther, thymic muscle corresponds to cul- 
tured skeletal muscle derived from more 
conventional sites of origin in all proper- 
ties tested. 

Thymuses were dissected from 8- 
week-old Sprague-Dawley rats, with 
care being taken to ensure that no tissue 
from the adjacent areas was included. 
For each experiment six thymuses were 
minced, trypsinized, and mechanically 
dissociated. The thymic cells were 

plated on plastic cover slips or in plastic 
wells and maintained in Dulbecco's mod- 
ified Eagle's medium (9) supplemented 
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Thymic Muscle Cells Bear Acetylcholine Receptors: 
Possible Relation to Myasthenia Gravis 

Abstract. Culture of dissociated thymus from rats and humans yielded cells identi- 
cal to skeletal muscle with respect to morphology, contractility, electrophysiological 
properties, and the presence of acetylcholine receptors. These cells, strategically lo- 
cated in the thymus, may play a role in initiation of the autoimmune response against 
acetylcholine receptors, which is characteristic of myasthenia gravis. 
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with 10 percent fetal calf serum. After 24 
hours, the unattached cells were washed 
away. The attached cells continued to 
proliferate until a monolayer was 
formed. In 3 to 5 days, spindle-shaped 
myoblastlike cells began to line up and 
fuse into multinucleated cells, identical 
in appearance to myotubes cultured from 
rat skeletal muscles (10). Other cells in 
the cultures appeared to be mainly fibro- 
blasts. Myotubes also grew in abundance 
from a human thymus removed from a 
myasthenic patient and cultured in the 
same way. By 10 to 14 days, cross stria- 
tions and spontaneous contractions were 
observed and recorded with micro- 
cinematography. Contraction could also 
be elicited by electrical stimulation with 
square pulses of 1-msec duration and 5- 
volt amplitude across two electrodes in 
the medium. 

'25I-labeled a-bungarotoxin (a-BuTx) 
was used to detect the presence of AChR 
in the cultured cells by autoradiographic 
and radiometric methods (11); a-BuTx 
has been shown to bind specifically, and 
essentially irreversibly, to AChR (12), 
and thus has been used as a marker for 
AChR sites (13). The number of a-BuTx 
binding sites is proportional (probably 
equal) to the number of AChR sites, and 
the terms are therefore used inter- 
changeably in this report. The rat 
thymus cultures were incubated with 
125I-labeled aBuTx for 30 minutes, and 
then thoroughly washed. For autoradiog- 
raphy, the cultures on the cover slips 
were fixed with 2 percent glutaralde- 
hyde, dehydrated, and dried in air. They 
were then coated with Kodak NTB-2 
emulsion and developed after exposure 
for 3 to 6 days. Silver grains were ob- 
served over all of the multinucleated 
myotubes, but not over other types of 
cells (Fig. 1). One noticeable feature was 
the distinct areas of high receptor con- 
centration, or "hot spots," similar to 
those reported for cultured skeletal 
muscle (14). The grain density over the 
hot spots was 10 to 20 times higher than 
that over the rest of the myotube mem- 
brane. 

In some cultures we also made quan- 
titive measurements of receptors (11). 
The cultures were incubated with 125I-la- 
beled a-BuTx and then washed. The 
receptors were solubilized with 1 per- 
cent Triton, and the radioactivity was 
counted in a gamma spectrometer with a 
counting efficiency of 82 percent. Each 
16-mm culture well contained (1.82 
+ 0.27) x 1010 receptors (S.E.M.), simi- 
lar to the values for rat skeletal muscle 
cultures of comparable age and cell den- 
sity (15). 

To determine the ACh sensitivity of 
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Fig. 2. Response of thymic myotube in culture 
to iontophoretically applied ACh. Upper 
trace: Intracellular recording of membrane po- 
tential. Lower trace: ACh pulse of 2-msec 
duration and 1.5-pta amplitude. Calibration: 5 
mv, 10 msec. The ACh sensitivity is calcu- 
lated to be 56 mv per nanocoulomb. 

these cells, ACh was applied by conven- 
tional microiontophoretic methods, 
while membrane potentials were moni- 
tored with intracellular microelectrodes. 
The resting membrane potentials of the 
thymic myotubes after 15 days in culture 
ranged from -40 to -60 mv, the mean 
being -47 ? 3.75 mv (S.E.M.), and 
spontaneous bursts of action potentials 
were often observed. The ACh sensitivi- 
ty of these muscle cells ranged from 10 to 
60 mv per nanocoulomb, the mean being 
24 ? 9.41 (Fig. 2). These findings demon- 
strate the presence of physiologically 
functional AChR's on the thymus-de- 
rived cells; the results are closely com- 
parable to those in typical cultured skele- 
tal muscle cells derived from rat limb 
muscles (16). 

In order to ascertain whether the thy- 
mic cells were capable of forming neuro- 
muscular contacts we cocultured them 
with cholinergic neuronal cells of a re- 
cently described (17) stable line (NG 108- 
15). Contacts developed between pro- 
cesses of the neuronal cells and the thy- 
mic cells, similar in appearance to those 
described for NG 108-15 cells and skele- 
tal muscle (17). 

Our findings suggest that cells cultured 
from rat and human thymus are identical 
to muscle cells derived from more con- 
ventional sources: they are striated and 
multinucleated, contract spontaneously 
and in response to electrical stimula- 
tion, have appropriate resting membrane 
potentials and ACh sensitivities, and ap- 
pear to form contacts with cholinergic 
neuronal cells. Perhaps most important 
is the finding of AChR's associated with 
these cells. On the basis of the identity of 
these properties, it seems reasonable to 
consider the thymus-derived cells to be 
true skeletal muscle. 

Because of their strategic location 
within the thymus, these receptor-bear- 
ing muscle cells may be vulnerable to im- 

mune attack. Some alteration in either 
the muscle cells or the immuno- 
competent lymphocytes of the thymus 
(18) may serve to break tolerance, and 
thereby initiate an autoimmune response 
directed against AChR as well as other 
components of skeletal muscle. Such a 
process would fit well with present con- 
cepts (19) of the pathogenesis of MG as 
an autoimmune disorder directed primar- 
ily against AChR. 
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