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Glucose causes a net movement of 
Ca2+ from the extracellular to the intra- 
cellular space of pancreatic islets con- 

taining more than 90 percent of 3-cells 
(1). On fractionation of 45Ca-labeled is- 

lets, the isotope taken up in response to 

glucose was recovered with the insulin 
secretory granules (2). In intact islets the 

glucose-sensitive calcium pool displayed 
a marked inertia to provocations aimed 
at initiating its mobilization (1, 2). There- 
fore, it is doubtful whether the short- 
term insulin-releasing action of glucose 
is mediated by mechanisms for intra- 
cellular Ca2+ uptake. The rapidity with 
which changes of the extracellular cal- 
cium influence insulin release (3) sug- 
gests that secretion may depend on a la- 
bile pool that is perhaps located in the pe- 
riphery of the /-cells. 

To measure specifically the intra- 
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cellular calcium, in previous experi- 
ments we used lanthanum ions to wash 
the islets free of extracellular calcium 
and to prevent losses of intracellular ion 

(1). Lanthanum displaces calcium from 
cell surfaces. Therefore, if the /3-cells 
contain a membrane-located calcium 

pool that is important for secretion, it is 
possible that the lanthanum wash tech- 
nique prevented the detection of such a 
pool. In the present study we labeled the 
islets with 45Ca and studied the rate of 

disappearance of isotope from both lan- 

thanum-displaceable and lanthanum- 

nondisplaceable pools. The results in- 
dicated that the 13-cells contain a glu- 
cose-sensitive calcium pool that is dis- 

placeable with lanthanum and shows the 

mobility required of a plausible mecha- 
nism for coupling the glucose stimulus 
with secretion. 
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Fresh islets containing more than 90 
percent /-cells were microdissected 
from the pancreatic glands of noninbred 
ohlob mice; the islets were not exposed 
to collagenase during the isolation proce- 
dure. They were incubated at 37?C in a 
salt-balanced tris or bicarbonate buffer 
(1) supplemented with sugars (see Fig. 1 
and Tables 1 and 2). The cells were in- 
cubated for 10 or 120 minutes in buffer 
containing trace amounts of 45CaC12; the 
calcium concentration was 2.56 mM in 
all media. The 45Ca-labeled islets were in- 
cubated for various periods of time in 
nonradioactive medium, and the radio- 

activity retained by the islets was mea- 
sured by liquid-scintillation counting af- 
ter they were freeze-dried (-40?C, 0.1 

pascal) overnight, weighed on a quartz- 
fiber balance, and dissolved in hyamine. 
Before being freeze-dried, some islets 
were washed for 60 minutes with 2 mM 
LaCl, (1). The radioactivity of islets not 
washed with lanthanum will be referred 
to as "total" calcium, that of lantha- 
num-washed islets as "lanthanum-non- 
displaceable" calcium, and the differ- 
ence between the two groups as "lantha- 
num-displaceable" calcium. Samples of 
the '5CaCI2-containing medium used for 

labeling the islets were used as external 
standards in the counting procedure. Is- 
let radioactivities are expressed in terms 
of millimoles of calcium with same spe- 
cific radioactivity as the medium used for 
labeling the islets. 

When 45Ca2+-labeled islets are placed 
in a nonradioactive buffer, the spon- 
taneous disappearance of isotope is 
much slower from lanthanum-non- 
displaceable than from lanthanum-dis- 
placeable pools; virtually all of the 45Ca2+ 
retained by islets after 90 minutes of ef- 
flux is nondisplaceable with lanthanum 
(1). Therefore, in the present experi- 
ments we subjected the 5Ca-labeled is- 
lets to very brief periods of incubation (0 
to 5 minutes) in nonradiactive buffer. Fig- 
ure 1 shows the retention of 45Ca2+ by is- 
lets incubated with 45CaC12 for 120 min- 
utes in the presence of 3 mM D-glucose, 
20 mM D-glucose, or 3 mM D-glucose 
plus 17 mM L-glucose. D-glucose, but 
not L-glucose, stimulated the 45Ca2+ up- 
take to the lanthanum-nondisplaceable 
pool, and there was only a negligible loss 
of isotope from this pool during efflux in 
nonradioactive buffer. After 5 minutes of 
efflux, the effect of 20 mM D-glucose on 
the lanthanum-nondisplaceable pool 
fully accounts for the increase of total is- 
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efflux, the effect of 20 mM D-glucose on 
the lanthanum-nondisplaceable pool 
fully accounts for the increase of total is- 
let 45Ca2+ at this time point. However, af- 
ter 1 or 2 minutes of efflux, the labeling 
of the total islet calcium appeared to be 
greater than that of the lanthanum-non- 
displaceable pool. This difference sug- 
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gests that 20 mM D-glucose had also stim- 
ulated the incorporation of 45Ca2+ into a 
lanthanum-displaceable pool of such mo- 
bility as to permit complete release of the 
label in only 5 minutes. 

After incubation of the islets with 
45CaC12 for 10 minutes, the radioactive la- 
beling of the lanthanum-nondisplaceable 
pool was about one-third of the labeling 

achieved by incubating the islets for 120 
minutes (compare Fig. 1 and Table 1). 
This is in contrast to the lanthanum-dis- 
placeable pool, the rather similar label- 
ing or which after incubating the islets 
for 10 minutes (Table 1) or 120 minutes 
(Fig. 1) is consistent with it being more 
mobile than the lanthanum-nondis- 
placeable calcium. In the experiments 

Table 1. Retention of 45Ca2+ by different calcium pools in islets during efflux. Islets were first 
incubated for 10 minutes in 45Ca-labeled tris buffer containing 3 or 20 mM D-glucose; they were 
then incubated for various periods of time in nonradioactive medium containing 3 mM glucose. 
The retention of label in each group is expressed as millimoles of Ca2+ with the same specific 
activities as the medium used for labeling the islets. The differences between parallel in- 
cubations in 45Ca-labeled medium containing 20 or 3 mM glucose are also given; the significance 
of these differences were examined by Student's t-test (see footnotes to table). The values are 
means + S.E. for the numbers of experiments stated in parentheses. 

Efflux Glucose Islet content of labeled calcium (mmole/kg dry weight) 

(time during Nondisplace- Displace- 
(min- labeling Total able with able with 
utes) (mM) lanthanum lanthanum 

0 3 24.75 + 2.06(11) 2.69 - 0.23(8) 22.06 
0 20 26.32 + 1.40(11) 3.52 + 0.24(8) 22.80 
0 Difference 1.57 + 2.30(11) 0.82 ? 0.23* (8) 

1 3 9.72 + 0.76(19) 2.18 ? 0.16(16) 7.54 
1 20 12.83 + 0.66(19) 3.36 + 0.20(16) 9.47 
1 Difference 3.09 + 0.60t (19) 1.15 + 0.34t (16) 

2 3 7.31 + 0.66(11) 2.22 + 0.20(8) 5.09 
2 20 8.93 + 0.41 (11) 2.98 + 0.27(8) 5.95 
2 Difference 1.62 + 0.85 (11) 0.77 - 0.175 (8) 

5 3 3.29 ? 0.20(11) 1.54 0.12(7) 1.75 
5 20 4.66 + 0.21 (11) 2.42 ? 0.30(7) 2.24 
5 Difference 1.37 ? 0.271 (11) 0.87 + 0.22t (7) 

*P < .02. tP < .001. tP < .01. 

Table 2. Effects of various conditions during labeling on the subsequent retention of 45Ca24 dur- 

ing efflux for 1 minute. The efflux medium contained 3 mM D-glucose in all experiments. Differ- 
ences from 3 mM D-glucose were evaluated by Student's t-test (see footnotes to table). Values 
are means ? S.E. 

Islet content of labeled calcium (mmole/kg dry weights) 
Experi- 

Compounds present-Experi- Compounds present ments Nondisplace- Displace- 
during loading (No.) Total able with able with 

lanthanum lanthanum 

Labeling in tris buffer for 10 minutes 
3 mM D-glucose 8 10.32 + 1.21 1.99 ? 0.17 8.33 ? 1.12- 
20 mM D-glucose 8 15.02 + 1.69* 2.40 + 0.14* 12.62 + 1.671 
3 mM D-glucose plus 8 11.60 ? 1.13 2.01 ? 0.16 9.60 ? 1.16 

17 mM L-glucose 
3 mM D-glucose plus 8 9.20 + 1.24 1.70 ? 0.16 7.50 + 1.25 

17 mM 3-O-methyl- 
-D-glucose 

Labeling in tris buffer for 10 minutes 
3 mM D-glucose 8 7.53 + 1.35 1.74 ? 0.12 5.79 + 1.30 
20 mM D-glucose 8 11.26 + 0.83* 2.49 ? 0.21* 8.77 + 0.79t 
20 mM D-glucose plus 8 10.54 + 0.85 1.74 + 0.10 8.80 ? 0.88 

125 .tg/ml diazoxide 

Labeling in tris buffer for 120 minutes 
3 mM D-glucose 17 13.18 ? 0.87 6.43 + 0.48 6.74 + 0.90 
20 mM D-glucose 10 25.67 ? 2.83t 11.84 ? 1.04? 13.83 ? 2.22* 
3 mM D-glucose plus 7 14.76+ 2.23 6.94 + 0.65 7.82 ? 1.99 

17 mM L-glucose 

Labeling in bicarbonate buffer for 10 minutes 
3 mM D-glucose 8 15.57 + 2.69 3.66 + 0.30 11.90+ 2.74 
20 mM D-glucose 8 23.01 ? 3.14t 5.06 ? 0.49t 17.95 ? 2.81t 

*P < .01. tP < .05. SP < .001. 
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shown in Table 1, islets were incubated 
with 45CaC1 together with 3 or 20 mM D- 

glucose, the effect of glucose being com- 
puted in each individual experiment. The 
presence of 20 mM D-glucose significant- 
ly increased the labeling of the lantha- 
num-nondisplaceable pool at all time 
points studied. Moreover, after 1 minute 
of efflux, the effect of 20 mM D-glucose 
on the total islet calcium was larger than 
that on the lanthanum-nondisplaceable 
pool (P < .025). This statistically signifi- 
cant difference strongly suggests that D- 

glucose stimulated the incorporation 
of 45Ca2+ into both lanthanum-nondis- 
placeable and lanthanum-displaceabie 
pools. 

To show even more convincingly that 
D-glucose affects a pool of very mobile 
calcium in the islets, we designed some 
experiments that would permit a strict 

comparison of the lanthanum-non- 
displaceable and lanthanum-displaceable 
calcium pools in parallel incubations of 
islets from the same animals. Islets were 
incubated with 45CaC12 for 10 or 120 min- 
utes and subsequently incubated for 1 
minute in nonradioactive buffer. In each 
experiment half of the islets were then 
freeze-dried and their radioactivity 
counted, while the other half was first 
washed with lanthanum. The mean value 
and its error could thus be estimated for 
the lanthanum-displaceable calcium in a 
series of repeated experiments. In com- 

plete corroboration of the conclusions 
drawn from Fig. 1 and Table 1, in- 
cubation with 45CaC12 in the presence of 
20 mM D-glucose resulted in a significant- 
ly greater labeling of the lanthanum-dis- 

placeable calcium pool than did loading 
in 3 mM D-glucose (Table 2). Neither L- 

glucose nor 3-O-methyl-D-glucose had 
such an effect. The effect of D-glucose 
was significant in both tris and bicarbo- 
nate buffer, although the magnitude of 
the 45Ca2+ incorporation appeared great- 
er in the bicarbonate buffer. The reten- 
tion of lanthanum-displaceable 45Ca2+ 

was not significantly influenced by the 

glucose concentration in the non- 
radioactive efflux medium (not shown). 
Thus, the effect of 20 mM D-glucose on 
the 45Ca2+ uptake is predominantly to en- 
hance the rate constant for association 
between Ca2+ and islets. 

It is generally believed that Ca2+ partic- 
ipates in stimulus-secretion coupling. 
Several studies have shown that glucose 
influences the handling of 45Ca2+ in pan- 
creatic islets (1, 2, 4), but the exact role 
of the ion in insulin secretion is unclear. 
As previously reported (1) and con- 
firmed here, D-glucose increases the in- 

corporation of 45Ca2+ into a lanthanum- 

nondisplaceable pool. This lanthanum- 
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nondisplaceable calcium appears to be 
associated with the insulin secretory 
granules (2). 

The lanthanum-nondisplaceable 45Ca2+ 
uptake in ,-cells resembles the enhanced 
labeling of granule-derived vesicles in 
leucocidin-stimulated leucocytes (5). In 
either case it is unlikely that this 45Ca2+ 
incorporation results from a general per- 
meability increase of the plasma mem- 
branes to calcium (1, 5). In leucocidin-in- 
duced exocytosis, the site of contact be- 
tween the granule and plasma 
membranes is thought to be permeable to 
the secretory proteins as well as to 
45Ca2+, although a visible aperture need 
not appear; when the granule withdraws 
as a partly emptied vesicle, it will be la- 
beled with the isotope (5). Exocytosis 
from /3-cells is usually considered to pro- 
ceed through a secretory aperture, the in- 
ward return of membrane material occur- 
ring in the form of endocytotic vesicles 
(6). Some of the lanthanum-non- 
displaceable 45Ca2+ in the /3-cells is per- 
haps due to endocytosis, but endocytosis 
can hardly explain the microscopically 
demonstrable calcium uptake in true 
granule vesicles (7). The information 
available about exocytosis in the /3-cells 
does not seem to rule out that in these 
cells, too, the granules are able to make 
brief contacts with the plasma mem- 
branes to release some insulin and take 
up calcium. That the lanthanum-non- 
displaceable 45Ca2+ uptake may depend 
on secretion is suggested by experiments 
with diazoxide, a potent inhibitor of glu- 
cose-induced insulin release (8). This 
drug completely abolished the stimula- 
tory effect of glucose on the lanthanum- 
nondisplaceable pool, "apparently with- 
out affecting the lanthanum-displaceable 
45Ca2+ uptake (Table 2). 

Whatever the mechanism of granular 
uptake of 45Ca2+, the lanthanum-non- 
displaceable calcium has such a low mo- 
bility that it does not seem to mediate the 
initial signal for secretion (1). The glu- 

cose-sensitive calcium pool that is dis- 
placeable with lanthanum is likely to oc- 
cur in the /8-cells, since the islets under 
study contain more than 90 percent /3- 
cells and exhibit insulin secretory re- 
sponses to D-glucose in both the tris and 
bicarbonate buffers employed (1). The 
displacement with lanthanum indicates 
that the calcium is located superficially 
in the cells, perhaps in the ,8-cell plasma 
membranes. Although we cannot be cer- 
tain that this calcium pool plays a causa- 
tive role in secretion, it is notable that it 
responded to D-glucose but not to L-glu- 
cose or 3-0-methyl-D-glucose. Among 
these closely related sugars only D-glu- 
cose is an insulin secretagogue. 

The data on the lanthanum-dis- 
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Fig. 1. Content of labeled calcium in micro- 
dissected islets that were incubated for 120 
minutes in tris buffer containing 45CaC12 and 
then for 0 to 5 minutes in nonradioactive medi- 
um. The radioactive medium used for labeling 
contained 3 mM D-glucose (0), 20 mM D-glu- 
cose (0), or 3 mM D-glucose plus 17 mM L- 
glucose ([), while the efflux medium con- 
tained 3 mM D-glucose in all cases. Mean val- 
ues + standard error of 5 to 29 experiments 
are given for total islet calcium (top panel) and 
for calcium remaining after washing with lan- 
thanum (middle panel); the bottom panel 
shows the difference between total and lantha- 
num-nondisplaceable calcium pools. Results 
are expressed as millimoles of labeled calcium 
with the same specific radioactivity as the me- 
dium used for labeling the islets. 
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placeable calcium pool are also in good 
agreement with the situation in leuco- 
cytes. Having found that leucocidin does 
not cause a general influx of 45Ca2+ into 
those cells, Woodin and Wieneke (5) con- 
cluded that secretion is triggered by en- 
hanced calcium binding to the inner cell 
membrane surface. That glucose-stimu- 
lated insulin release is associated with a 
deposition of calcium in the /3-cell 
plasma membrane has been reported on 
the basis of studies of pyroantimonate 
precipitation and electron microscopy 
(7). Our experiments suggest that a glu- 
cose-sensitive calcium pool is localized 
in the ,/-cell plasma membrane, and that 
the membrane-located calcium has suf- 
ficient mobility to meet the kinetic de- 
mands requisite for a particular calcium 
pool to serve in the process of stimulus- 
secretion coupling. 
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