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A three-axis short-period seismometer 
was delivered to the surface of Mars by 
Viking Lander 2 on 3 September 1976 
and began to operate at 00:53:01 G.M.T. 
on 4 September shortly after noon, land- 
er local time (L.L.T.) (1). 

An important first step in character- 
izing the seismology of a planet is to de- 
termine the level and nature of the back- 
ground noise. In the case of Earth, the 
main sources of background noise are 
the ocean and the atmosphere. These 
noises, termed microseisms, were stud- 
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ied extensively in the early days of ter- 
restrial seismology but are no longer of 
much interest since they are now well un- 
derstood. This "noise" in the case of a 
first seismic experiment on Mars actually 
contains useful micrometeorological in- 
formation and must be well understood 
before seismic events can be confidently 
identified. 

The ultimate goals of a seismic experi- 
ment on a planet are to determine the lev- 
el of seismic activity and the internal 
structure. To achieve these requires a 
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long-lived seismic network. Secondary 
goals are monitoring meteoroid impacts 
and establishing the nature of the back- 
ground noise. 

Although Mars has such well-devel- 
oped tectonic features as fractures, gra- 
bens, and youthful-appearing volcanoes, 
there is no evidence for the kind of plate 
tectonics that is responsible for most of 
the seismic activity on Earth. On the oth- 
er hand, large areas of Mars appear to be 
grossly out of hydrostatic equilibrium, as 
evidenced by gravity anomalies which 
are much more pronounced than those 
on Earth or the moon (2). Substantial 
stresses must exist in the interior in or- 
der to support the nonhydrostatic shape 
and, in particular, the young volcanic ter- 
rains. Although the level of seismic activ- 
ity on the moon is much less than that on 
Earth, thousands of small quakes are re- 
corded there each year by the Apollo 
seismic network. We would therefore ex- 
pect that seismic events also occur on 
Mars, although their magnitude and fre- 
quency cannot be estimated. 

Description of the Viking seismome- 
ter. The Viking seismometer package in- 
cludes sensors, amplifiers, filters, auto- 
matic event detectors, data compactors, 
and temporary data storage. The in- 
strument package, measuring 12 by 15 by 
12 cm and weighing 2.2 kg, is located on 
the top of the lander's equipment bay 
near the attachment of leg 1. The nomi- 
nal power consumption is 3.5 watts. The 
useful frequency range is 0.1 to 10 hertz 
with a minimum ground amplitude reso- 
lution of 2 nm at 3 hertz and 10 nm at 1 
hertz. The maximum magnification is 
218,000 at 3 hertz when the received sig- 
nal is plotted at a scale of 0.436 mm per 
digital unit of seismometer output. The 
Viking instrument thus has a maximum 
sensitivity equivalent to that usable at a 
relatively quiet site on Earth (Fig. 1). 

The sensors are three matched, orthog- 
onally mounted (one vertical and two 
horizontal), inertial velocity transducers. 
In each sensor a mass-coil assembly is 
supported on two booms by two elastic 
hinges (Bendix Free-Flex) in such a way 
that the flat transducer coil is poised be- 
tween the facing poles of two channel 
magnets arranged in series. Motion of 
the frame causes the transducer coil to 
move relative to the field of the magnets 
and generates a signal that is proportion- 
al to the relative velocity between the 
coil and magnets. The undamped natural 
frequency of each instrument is 4 hertz, 

long-lived seismic network. Secondary 
goals are monitoring meteoroid impacts 
and establishing the nature of the back- 
ground noise. 

Although Mars has such well-devel- 
oped tectonic features as fractures, gra- 
bens, and youthful-appearing volcanoes, 
there is no evidence for the kind of plate 
tectonics that is responsible for most of 
the seismic activity on Earth. On the oth- 
er hand, large areas of Mars appear to be 
grossly out of hydrostatic equilibrium, as 
evidenced by gravity anomalies which 
are much more pronounced than those 
on Earth or the moon (2). Substantial 
stresses must exist in the interior in or- 
der to support the nonhydrostatic shape 
and, in particular, the young volcanic ter- 
rains. Although the level of seismic activ- 
ity on the moon is much less than that on 
Earth, thousands of small quakes are re- 
corded there each year by the Apollo 
seismic network. We would therefore ex- 
pect that seismic events also occur on 
Mars, although their magnitude and fre- 
quency cannot be estimated. 

Description of the Viking seismome- 
ter. The Viking seismometer package in- 
cludes sensors, amplifiers, filters, auto- 
matic event detectors, data compactors, 
and temporary data storage. The in- 
strument package, measuring 12 by 15 by 
12 cm and weighing 2.2 kg, is located on 
the top of the lander's equipment bay 
near the attachment of leg 1. The nomi- 
nal power consumption is 3.5 watts. The 
useful frequency range is 0.1 to 10 hertz 
with a minimum ground amplitude reso- 
lution of 2 nm at 3 hertz and 10 nm at 1 
hertz. The maximum magnification is 
218,000 at 3 hertz when the received sig- 
nal is plotted at a scale of 0.436 mm per 
digital unit of seismometer output. The 
Viking instrument thus has a maximum 
sensitivity equivalent to that usable at a 
relatively quiet site on Earth (Fig. 1). 

The sensors are three matched, orthog- 
onally mounted (one vertical and two 
horizontal), inertial velocity transducers. 
In each sensor a mass-coil assembly is 
supported on two booms by two elastic 
hinges (Bendix Free-Flex) in such a way 
that the flat transducer coil is poised be- 
tween the facing poles of two channel 
magnets arranged in series. Motion of 
the frame causes the transducer coil to 
move relative to the field of the magnets 
and generates a signal that is proportion- 
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frequency of each instrument is 4 hertz, 
the coefficient of damping is 0.6, and the 
generator constant is 177 volt m-~ sec-1. 

Each sensor is equipped with a calibra- 
tion mechanism by which the mass may 
be magnetically deflected approximately 
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The Viking Seismic Experiment 

Abstract. A three-axis short-period seismometer is now operating on Mars in the 
Utopia Planitia region. The noise background correlates well with wind gusts. Al- 
though no quakes have been detected in the first 60 days of observation, it is pre- 
mature to draw any conclusions about the seismicity of Mars. The instrument is ex- 
pected to return data for at least 2 years. 
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4 tzm. The deflection and release of the 
mass in each direction produces a pair of 
doublets (Fig. 2d), from which the opera- 
tion and characteristics of the instrument 
may be ascertained and which may also 
be used to determine the tilt of the seis- 
mometer package. A comparison of the 
Viking 2 seismometer calibration doublet 
with prelaunch calibration data gives a 
tilt of 9.5? + 2.8? down at an azimuth of 
278? + 17? from north. This agrees with 
the tilt of the lander of 8.2? determined 
from the lander's inertial reference sys- 
tem. 

Each sensor has an amplifier with an 
amplification selectable by Earth com- 
mand within the range of 76 to 112 db in 
six increments. After amplification and 
analog multiplexing, the seismic signals 
are digitized at the rate of 121 samples 
per second per axis. Subsequent digital 
processing of the data includes filtering, 
averaging, compression, event detec- 
tion, and buffer memory storage. These 
functions, as well as digital multiplexing, 
command decoding, timing, and control 
are implemented in custom, large-scale 
integrated (LSI) circuitry. 

Modes of operation. To maximize the 
information return within a limited data 
telemetering capacity, a data compac- 
tion scheme with three data processing 
modes was built into the seismometer. 
The three modes of operation-high- 
data-rate, event, and normal modes-are 
controlled by a command sequence that 
is issued and updated from Earth. The 
high-data-rate mode samples each sensor 
at 20.2 samples per second. Before sam- 
pling, data is digitally filtered with a low- 
pass filter with cutoff frequencies of 0.5, 
1.0, 2.0, and 4.0 hertz that can be se- 
lected by commands from Earth. Each 
data word consists of seven bits plus a 
sign bit. Although this mode gives full 
characterization of seismic signals, it has 
been used for an average of less than 1 
hour per day because of the limitations 
of total data bits allotted to the seismic 
experiment. 

The event mode is the most commonly 
used mode of operation. The envelope of 
the seismic signal, rather than the signal 
itself, is sampled at the rate of 1.01 sam- 
ples per second per axis. To produce the 
envelope, the absolute value of the seis- 
mic signal is smoothed by passing it 
through the digital filter operating at the 
0.5-hertz cutoff frequency. Simulta- 
neously, a count of the positive axis 
crossings (a measure of the dominant fre- 
quency) is sampled at the same rate. This 
combination of sampling the envelope (7- 
bit word) and axis crossing (5-bit word) 
results in a 12.3 to 1 reduction in the data 
required to encode the original signal. 
17 DECEMBER 1976 

This mode may be initiated either by 
command or automatically by an event 
detector in the seismometer electronic 
package. The trigger level of the event 
detector is a multiple of the long-term 
(1081 seconds) averaged microseism lev- 
el that can be selected by commands 
from Earth. 

The normal mode is the lowest data- 
rate mode, operating at 4.04 samples per 
minute per channel. Its purpose is to 
monitor the average level and spectral 
content of the microseismic background. 
A form of "comb filtering" takes place, 
in which the digital low-pass filter is used 
in conjunction with the frequency re- 
sponse of the inertial sensor. The abso- 
lute values of the data are then passed 
through a low-pass filter to obtain the 
12.67-second running average of the mi- 
croseismic level. The digital low-pass fil- 
ter may be fixed or automatically 
stepped through each cutoff frequency, 
at the rate of 2 minutes for each fre- 
quency. 

The instrument produces 6.17 x 103 
bit/hour in the normal (or background 
monitoring) mode, 1.47 x 105 bit/hour in 
the event mode, and 1.77 x 106 bit/hour 
when operating in the high-data-rate 
mode. Examples of seismic data ob- 
tained under the three different modes of 
operation are shown in Fig. 2. 

Summary of operations. Before the 
landing, the computer aboard the lander 

Fig. 1. Magnification of 
the Viking seismograph 
in each of the operating 
modes. The magnifica- 
tions are based on as- 
sumption that the digit- 
ized data are plotted at 
scales of 0.44, 0.51, and 
0.76 mm/DU for high- 
data-rate, event, and 
normal modes, respec- 
tively. A typical U.S. 
Geological Survey short- 
period instrument used 
in the worldwide seismic 
network is shown as a 
comparison. 
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was loaded with a seismometer sequence 
that had been designed to survey the am- 
bient seismic environment. After landing 
and uncaging the seismometer, this se- 
quence was initiated. 

The ambient seismic background was 
lower than expected. Consequently, the 
seismometer was commanded to maxi- 
mum gain on day 4, and the operational 
sequence was updated to provide long- 
term seismic monitoring. Initially, the 
seismometer was commanded into the 
normal mode at times when mechanical 
activity was scheduled on the lander. On 
days 9, 19, and 29, the commands for se- 
lected activities were changed to provide 
event-mode data in order to acquire sig- 
natures and lander vibrational character- 
istics as well as to provide diagnostic in- 
formation on lander operation. 

The operation in the event and high- 
data-rate modes has been maximized 
since day 10, and normal-mode opera- 
tions have only been used to fill in when 
necessary. The periods of high-data-rate 
operations have been moved throughout 
the day, including during the windy peri- 
ods, in order to examine in detail some 
selected seismic signatures. 

As of 1 November 1976, the following 
total recording times were compiled: 
event mode, 982 hours and high-data- 
rate mode, 39 hours; 99 percent of these 
times were accumulated at maximum 
gain. Approximately 450 hours of data 
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Fig. 3. Representative sample of the correla- 
tion between seismic and wind data. The wind 
data should be displaced by + 9 seconds for 
correct alignment. Between gusts A and B, 
the wind direction changed from southwest to 
north. The terms X, Y, and Z designate verti- 
cal and two horizontal components, respec- 
tively. The orientation of the horizontal com- 
ponents are 329? (Y) and 239? (Z), measured 
clockwise from north. 

There is a lander body resonance iden- 
tified at 8 + 1 hertz, which is excited by 
strong vibrations induced by lander activ- 
ities. Higher-frequency resonances are 
known to exist, but they are beyond 
the range of detectability of the seis- 
mometer. There appear to be some mi- 
nor resonances between 1 and 4 hertz, 
but their sources have not yet been 
identified. 

Detection capability and results to 
date. The seismic noise background on 
Mars has been relatively low except dur- 
ing limited peri6ds of high wind gusts 
and spacecraft activity. At the present, 
the seismometer runs at maximum gain 
at all times. From the instrument sensi- 
tivity and results of terrestrial tests, we 
estimate that the Viking seismometer 
should detect quakes with body-wave 
magnitudes of mb = 2.5 at 100 km, 
mb = 3 at 200 km, mb = 5 at 900 km, and 
mb = 6 up to a distance of 90? (5300 km), 
provided that the attenuation character- 
istics are similar in both planets. At great- 
er distances a possible core may create a 
shadow zone and detection may become 
more difficult. It is reasonable to assume, 
however, that a quake with an equivalent 
magnitude of about 6.5 to 7.0 can be de- 
tected anywhere on the planet. 

If the seismicity per unit area of Mars 
were the same as that of Earth, if quakes 
were distributed uniformly over the sur- 
face of the planet and they occurred ran- 
domly with time, and if there were no 
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wind to interfere with the observation, 
then one would expect to detect between 
one and three events per month with the 
Viking seismometer. To date, no seismic 
events positively identified as quakes 
have been detected during the 450 hours 
(19 days on Earth) of operation in the qui- 
et period of the martian day. The proba- 
bility that such an observation results 
when an average of one seismic event is 
expected per month is as high as 50 per- 
cent, under the assumption that events 
are randomly distributed with time. For 
a nonrandom distribution in time, the 
probability may be greater. Thus, from 
the limited amount of seismic data from a 
relatively short period of time, it is pre- 
mature to draw any conclusions about 
the seismicity of Mars relative to that of 
Earth. A few anomalous events have oc- 
curred during the noisier part of the day, 
but more data must be accumulated. 
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The Viking Carbon Assimilation Experiments: Interim Report 

Abstract. A synthesis of organic matterfrom atmospheric carbon monoxide or car- 
bon dioxide, or both, appears to take place in the surface material of Mars at a low 
rate. The synthesis appears to be thermolabile and to be inhibited by moisture. 
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or pyrolytic umn which separates them into two frac- 
neasures the tions: peak 1, containing CO, CO,, and 
face material CH4, if any; and peak 2, containing or- 
and CO2, or ganic fragments larger than methane. 
The experi- The radioactivity of each peak is 

nditions that, counted. The radioactivity of peak 2 rep- 
ate the actual resents organic matter synthesized from 
ler to ensure the labeled gases. Peak 2 also contains a 
digenous life small residue of 14CO2 not eluted with 
ion of the ex- peak 1. The size of this residue is known 

preliminary from laboratory tests made on flight-con- 
Viking mis- figured columns with either sterilized 

rs (2). soils or empty chambers (Fig. 1). 
" is exposed The results of all experiments con- 
ed with 14CO ducted on Mars from the start of opera- 
sly, to a light tions until the beginning of the solar con- 
nartian solar junction period are summarized in Fig. 1 
i. After 120 and Table 1. (Counts per minute are con- 
)sphere is re- vertible to disintegrations per minute by 
d the temper- dividing by 0.11, the efficiency of the 
it to 625?C in counters. All counts are corrected for 
ganic matter background.) The first two experiments 
cts of pyrol- (Chryse 1 and Chryse 2) were described 
ed 14CO and previously (1). Chryse 3 was intended to 
il grains and repeat Chryse 1 with a fresh sample from 
red to a col- the same site. The result, 245 dis- 

integrations per minute (27 count/min), is 

weakly positive. In seeking an explana- 
r-tion for the difference between Chryse 1 

and Chryse 3, it was found that the two 
samples had different temperature his- 
tories. Chryse 3 was acquired at 1120 
hours, Mars local time, when the surface 
temperature was some 60?C higher than 
at 0700 hours, when the Chryse i sample 
was acquired. Perhaps more important is 
the temperature increase (to 26?C) that 
occurred during the Chryse 3 incubation 
because of a programming error which 
deactivated the thermoelectric coolers. 

Chryse 4 was another attempt to dupli- 
cate Chryse 1. Since the three incubation 
cells provided with the instrument had 
now been used, Chryse 4 was incubated 
in the chamber that had been used for 

_j, L_ Chryse 2; fresh surface material was add- 
50 60 70 x104 50 70x ed to that already in the chamber. The 

k fro b thermal control was satisfactory in this ik 1 from labo- 
is or no soils experiment, but the unusually low first 
i the Mars re- peak indicates either an incomplete deliv- 
atory data are ery of soil or of radioactive gases, or a 

line peak leak from the incubation chamber. Peak 

inu 
wth 

pe)k 2 is, nevertheless, clearly positive; in iinute (DPM). 
2 is 27 DPM fact, the ratio of peak 2 to peak 1 is high- 

icient is 2.6 x er for Chryse 4 than for any other 
)eak 1 = 41 x sample. 
puting the re- The first Utopia sample was incubated with Table I, 

the symbols in the dark. The result, weakly positive, 
1 to 4, and UI suggests that illumination is beneficial 

but not essential for the reaction. Of par- 
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