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Mathematics and Computer Science: 

Coping with Finiteness 

Advances in our ability to compute are bringing us 

substantially closer to ultimate limitations. 

SCIE: NmCE: 

This is a pretty big number; at least, if a 
monkey sits at a typewriter and types at 
random, the average number of trials 
before he types perfectly the entire text 
of Shakespeare's Hamlet would be 
much, much less than this: it is merely a 
1 followed by about 40,000 zeros. The 
general rule is 
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A well-known book entitled One, Two, 
Three, ... Infinity was published by Ga- 
mov about 30 years ago (1), and he began 
by telling a story about two Hungarian 
noblemen. It seems that the two gentle- 
men were out riding, and one suggested 
to the other that they play a game: Who 
can name the largest number. "Good," 
said the second man, "you go first." 
After several minutes of intense concen- 
tration, the first nobleman announced 
the largest number he could think of: 
"Three." Now it was the other man's 
turn, and he thought furiously, but after 
about a quarter of an hour he gave up. 
"You win," he said. 

In this article I will try to assess how 
much further we have come, by dis- 
cussing how well we can now deal with 
large quantities. Although we have cer- 
tainly narrowed the gap between three 
and infinity, recent results indicate that 
we will never actually be able to go very 
far in practice. My purpose is to explore 
relationships between the finite and the 
infinite, in the light of these devel- 
opments. 

Some Large Finite Numbers 

Since the time of Greek philosophy, 
men have prided thlmselves on their 
ability to understand something about 
infinity; and it has become traditional in 
some circles to regard finite things as 
essentially trivial, too limited to be of 
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any interest. It is hard to debunk such a 
notion, since there are no accepted stan- 
dards for demonstrating that something 
is interesting, especially when something 
finite is compared with something tran- 
scendent. Yet I believe that the climate 
of thought is changing, since finite pro- 
cesses are proving to be such fascinating 
objects of study. 

In the first place, it is important to 
understand that finite numbers can be 
extremely large. Let us start with some 
very familiar and fairly small numbers: 
the value ofxn is x + x + -- + x, added 
n times. Similarly we can define a num- 
ber I shall write as xTn, which means 
xx.. x multiplied n times. For example, 
110 10 = 10-10-10- 10-10-10-10-10 10-10 
= 10,000,000,000 is 10 billion; this is 
usually written 1010, but it will be clear in 
a minute why I prefer to use an upward 
arrow. In fact, the next step uses two 
arrows 

xTTn = xT (xT( ..* Tx) ... )) 

where we take powers n times. For ex- 
ample 

10 

10 
10 

10 
10 

10 
10 

10 T 10 = 1010 

10 
10 

10 
10 

10 
10 

= 1 followed by 1010 

Thus, one arrow is defined in terms of 
none, two in terms of one, three in terms 
of two, and so on. 

In order to see how these arrow func- 
tions behave, let us look at a very small 
example 

10TTTT3 

This is equal to 

101TTT (10 T10) 

so we should first evaluate 10 TT T 10. 
This is 

10TT (10Tt (10TT (10TT (10TT 

(10 T T (10 T T (10 T T (10 T T 10)))))))) 

and that is 

10 TT (10 T (10 Tt (10 tT (10 TT 
10 

10 
10 

10 
10 

10 
10 

10 

(10 T (10 T (10 T T 1010))))))) 

= 10TT (10TT (10TT(10T1 (10 (10T 
10 

(10 (10 T 1010 )))))) 

where the stack of 10's is 10 1 T10 levels 
tall. We take the huge number at the 
right of this formula, which I cannot 
even write down without using the arrow 
notation, and repeat the double-arrow 
operation, getting an even huger num- 
ber, and then we must do the same thing 
again and again. Let us call the final 
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result MY. (It is such an immense number, 
we cannot use just an ordinary letter for 
it.) 

Of course we are not done yet, we 
have only evaluated 10 T T 10; to com- 
plete the job we need to stick this gigan- 
tic number into the formula for 
10 T T 3, namely 

10 T3 = 10ttt 
= 10TT (10TT (10TT... Tt (10 T T10)... )) 

Ye times 

The three dots" .' . " here suppress a lot 
of detail-maybe I should have used four 
dots. At any rate it seems to me that the 
magnitude of this number 10 t T 1 T3 is so 
large as to be beyond human comprehen- 
sion. 

On the other hand, it is very small as 
finite numbers go. We might have used Y 
arrows instead of just four, but even that 
would not get us much further-almost 
all finite numbers are larger than this. I 
think this example helps open our eyes 
to the fact that some numbers are very 
large even if they are merely finite. Thus, 
mathematicians who stick mostly to 
working with finite numbers are not real- 
ly limiting themselves too severely. 

Realistic Numbers 

This discussion has set the stage for 
the next point I want to make, namely 
that our total resources are not actually 
very large. Let us try to see how big the 
known universe is. Archimedes began 
such an investigation many years ago, in 
his famous discussion of the number of 
grains of sand that would completely fill 
the earth and sky; he did not have the 
benefit of modern astronomy, but his 
estimate was qualitatively the same as 
what we would say today. The distance 
to the farthest observable galaxies is 
thought to be at most about 10 billion 
light years. On the other hand, the funda- 
mental nucleons that make up matter are 
about 10-12 centimeter in diameter. In 
order to get a generous upper bound on 
the size of the universe, let us imagine a 
cube that is 40 billion light years on each 
side, and fill it with tiny cubes that are 
smaller than protons and neutrons, say 
10-13 cm on each side (see Fig. 1). The 
total number of little cubes comes to less 
than 10125. We might say that this is an 
"astronomically large" number, but ac- 
tually it has only 125 digits. 

Instead of talking only about large 
numbers of objects, let us also consider 
the time dimension. Here the numbers 
are much smaller; for example, if we 
take as a unit the amount of time that 
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Fig. 1. The known universe fits inside this 
box. 

light rays take to travel 10-13 cm, the 
total number of time units since the dawn 
of the universe is only one fourth the 
number of little cubes along a single edge 
of the big cube in Fig. 1, assuming that 
the universe is 10 billion years old. 

Coming down to earth, it is instructive 
to consider typical transportation 
speeds. 

Snail 
Man walking 
U.S. automobile 
Jet plane 
Supersonic jet 

0.006 mile/hour 
4 mile/hour 

55 mile/hour 
600 mile/hour 

1200 mile/hour 

I would never think of walking from 
California to Boston, but the plane flight 
is only 150 times faster. Compare this to 
the situation with respect to the follow- 
ing computation speeds, given 10-digit 
numbers. 

Man (pencil and paper) 
Man (abacus) 
Mechanical calculator 
Medium-speed computer 
Fast computer 

0.2/sec 
1/sec 
4/sec 

200,000/sec 
200,000,000/sec 

A medium-fast computer can add 1 mil- 
lion times faster than we can, and the 
fastest machines are 1000 times faster 
yet. Such a ratio of speeds is unprece- 
dented in history: consider how much a 
mere factor of 10 in speed, provided by 

1 2 12 1i 12 

21 j 3 12 12 

2 I 2 12 12 12 T4rF 
1 13 2 3 12 12 

3 i 3 12 

3 i 3 12 

3 i i 12 1 2 13 

i3 13 1 2 13 2 /2 

1 
1' 

2 (33 

2 2 1 2 1 2 1 2 2 

Fig. 2. A "random" path from the lower left 
comer to the upper right corer of a 10 x 10 
grid. 

the automobile, has changed our lives, 
and note that computers have increased 
our calculation speeds by six orders of 
magnitude; that is more than the ratio of 
the fastest airplane velocity to a snail's 
pace. 

I do not mean to claim that computers 
do everything a million times faster than 
people can; mere mortals like us can do 
some things much better. For example, 
you and I can even recognize the face of 
a friend who has recently grown a mous- 
tache; and for tasks like filing, a comput- 
er may be only ten or so times faster than 
a good secretary. But when it comes to 
arithmetic, computers appear to be al- 
most infinitely fast compared with 
people. 

As a result, we have begun to think 
about computational problems that used 
to be unthinkable. Our appetite for calcu- 
lation has caused us to deal with finite 
numbers much larger than those we con- 
sidered before, and this has opened up a 
rich vein of challenging problems, just as 
exciting as the problems about infinity 
which have inspired mathematicians for 
so many centuries. 

Of course, computers are not infinitely 
fast, and our expectations have become 
inflated even faster than our computa- 
tional capabilities. We are forced to real- 
ize that there are limits beyond which we 
cannot go. The numbers we can deal 
with are not only finite, they are very 
finite, and we do not have the time or 
space to solve certain problems even 
with the aid of the fastest computers. 
Thus, the theme of this article is coping 
with finiteness: What useful things can 
we say about these finite limitations? 
How have people learned to deal with 
the situation? 

Advances in Technology and Techniques 

During the last 15 years computer de- 
signers have made computing machines 
about 1000 times faster. Mathematicians 
and computer scientists have also discov- 
ered a variety of new techniques, by 
which many problems can now be solved 
enormously faster than they could be- 
fore. I will present several examples of 
this; the first one, which is somehow 
symbolic of our advances in arithmetic 
ability, is the following factorization of a 
very large number, completed in 1970 by 
Morrison and Brillhart (2). 

340,282,366,920, 

938,463,463,374,607,431,768,211,457 
= 5,704,689,200,685,129,054,721 x 

59,649,589,127,497,217 
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The point, of course, is not simply to 
compute the exact 39-digit product of 
these two large numbers; that is trivial 
and takes only a few millionths of a 
second. The problem is to start with the 

big 39-digit number and to discover its 
prime factors. (The big number is 
2128 + 1, and its factors are of use, for 
example, in the design of codes of a type 
used for space communications.) The 
number of microseconds per year is only 
31,556,952,000,000, a 14-digit number, 
so even if we could test 1 million factors 
every second it would take about 2000 
years to discover the smaller factor. The 
factorization actually took about 11/2 

hours of computer time; it was achieved 
by a combination of sophisticated meth- 
ods representing a culmination of mathe- 
matical developments that began about 
160 years earlier. 

Latin Squares 

Now let us look at another kind of 
example. Here is a so-called latin square 
of order 8, an arrangement of eight num- 
bers in eight rows and eight columns so 

and he stated his belief that orthogonal 
latin squares of these missing orders do 
not exist (3). It is easy to verify this for 
order 2; and in 1900, an exhaustive anal- 
ysis by a French mathematician (4) 
showed that orthogonal latin squares of 
order 6 are indeed impossible. About 20 
years later, an American mathematician 
(5) published a proof that Euler was right 
in the remaining cases 10, 14, 18, . . ; 
but unfortunately his "proof" had a seri- 
ous flaw so the question was still not 
settled. Finally computers were in- 
vented, and an attempt was made to test 
Euler's conjecture in the smallest remain- 
ing case, order 10. 

In 1952, a group of mathematicians at 
the University of California at Los Ange- 
les (UCLA) decided to see if there were 
any latin squares orthogonal to the fol- 
lowing one of order 10. 

0 1 2 3 4 5 6 7 8 9 
1 8 3 2 5 4 7 6 9 0 
2 9 5 6 3 0 8 4 7 1 
3709861524 
4 6 7 5 2 9 0 8 1 3 
5 0 9 4 7 8 3 1 6 2 
6547132908 
7 4 1 8 0 2 9 3 5 6 
8360915247 
9281674035 

that each number appears in each row This particular square was selected more 
and each column. or less at random, using a procedure 

1 2 3 4 5 6 7 8 analogous to one discussed in the next 
2 1 4 3 6 5 8 7 example below; the probability that the 
3 41 2 7 8 5 6 above latin square will be generated (6) 
43218765 
567 8 1 2 34 turns out to be about 10-26, so I imagine 
6 5 8 7 2 1 4 3 that there are extremely many 10 x 10 
78 5 6 3 4 1 2 latin squares, something like 1026 at 87654321 

least. However, the computer at UCLA 
On top of this square we can overlay ran for many hours trying to find an 
another latin square of order 8, using orthogonal mate for this square; finally, 
italic numbers; again, there is one italic having produced no answers, it was shut 
digit of every kind in every row and in off (7). This was consistent with Euler's 
every column. conjecture that no mates exist, but the 

I1 2 2 3 3 4 54 5 6 6 7 7 8 8 investigators realized that several hun- 
23 14 41 32 67 58 85 76 dred more years of calculation would be 
35 46 17 28 71 82 53 64 required to show this exhaustively-and 
47 38 25 16 83 74 61 52 
54 63 72 81 18 27 36 45 then they would have to try to find mates 54 63 72 81 18 27 36 45 
62 5 1 84 73 26 15 48 37 for the other 1026 or so initial squares. 
78 87 56 65 34 4 3 12 21 The method used in this experiment 86 75 68 57 42 31 24 13 

was to look for a mate by filling in the 
These two latin squares are called orthog- entries row by row, one entry at a time in 
onal, since the superposition shows that all possible ways, without violating the 
every pair of roman and italic numbers definition of orthogonal latin squares. 
occurs exactly once. Thus we have ro- Furthermore, they used the fact that the 
man 1 with italic 1 (in the upper left leftmost column of the orthogonal mate 
corner), roman 1 with italic 2 (near the can be assumed to contain the digits 0 to 
lower right corner), and so on; all 8 x 8 9 in order. Five years later Parker (8) 
possibilities appear. Latin squares and discovered a far better way to look for 
orthogonal latin squares are commonly orthogonal mates. His idea was to find all 
used in the design of statistical experi- ways to put ten 0's into an orthogonal 
ments and for such things as crop rota- mate for a particular square; this means 
tion. finding one entry in each row and each 

The great 18th-century mathematician column so that no two entries contain the 
Euler showed how to construct pairs of same digit. This is a much easier prob- 
orthogonal latin squares of all sizes ex- lem, and it turned out that there were 
cept for order 2, 6, 10, 14, 18, and so on, roughly 100 ways to do it, using any cell 
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in the first column. The remaining prob- 
lem is to combine a solution for the O's 
with a solution for the l's and a solution 
for the 2's, and so forth, and again this is 
comparatively simple. Parker was able 
to deduce that there is exactly one latin 
square orthogonal to the one studied at 
UCLA, namely the italic digits in the 
following array. 

00 12 28 35 49 54 67 73 86 91 
11 87 34 29 53 46 75 60 92 08 
22 95 56 64 38 07 80 41 79 13 
33 76 09 90 84 65 18 52 21 47 
44 68 71 57 25 93 06 89 10 32 
55 01 97 48 70 82 39 14 63 26 
66 59 40 72 17 31 23 98 04 85 
77 43 15 81 02 20 94 36 58 69 
88 30 62 03 96 19 51 27 45 74 
99 24 83 16 61 78 42 05 37 50 

And the total time for his program to be 

completed, on a slow computer in 1959, 
was less than 1 minute. 

This example, together with the pre- 
vious example about factoring, illus- 
trates an important point: we should nev- 
er expect that the first way we try to do 
something on a computer is the best 
way. Good programming is much more 
subtle than that; chances are that an 
expert can find a method that will go 
considerably faster than that of a novice, 
especially in combinatorial problems 
where there have been significant ad- 
vances in techniques during recent 
years. By analyzing Parker's method sta- 
tistically, I estimate that his approach 
runs about 100 billion times faster than 
the original method used by the extreme- 
ly competent mathematicians who stud- 
ied this problem at UCLA; that is 11 
orders of magnitude faster, because of a 
better idea. 

By now many sets of orthogonal latin 
squares of order 10 have been found, and 
orthogonal pairs are known to exist for 
all orders greater than 6. But computers 
were of little help in discovering these 
facts; the constructions were discovered 
by hand (by Parker himself in many cas- 
es), generalizing from patterns observed 
in the smaller cases (9). For order 14 the 
problem is so much larger that even Park- 
er's method would no longer be fast 
enough to search for all orthogonal 
mates by computer. This illustrates an- 
other point about combinatorial prob- 
lems: the computation time often increas- 
es greatly when the size of the input to 
the problem has gone up only slightly. 

Counting the Paths on a Grid 

The next examples are all based on a 
single diagram, namely a grid of 100 
squares; it is the diagram we would ob- 
tain if we drew boxes around the ele- 
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ments of a 10 x 10 latin square. (In- 
cidentally, there are many possible exam- 
ples that illustrate the points I wish to 
make, so it was necessary for me to find 
some way to narrow down the selection. 
Since a 10 x 10 array fits nicely on a 
page, I have decided to stick mostly to 
examples that are based somehow on 
this one diagram.) 

First let us consider how many ways 
there are to go along the lines of such a 
grid from the lower left corner to the 
upper right corner, without touching the 
same point twice. Problems like this 
have been studied by chemists and physi- 
cists concerned with the behavior of 
large molecules (10); it seems to be a 
difficult problem, and no way is known 
to calculate the exact number of such 
paths in a reasonable amount of time. 
However, it is possible to obtain approxi- 
mate solutions which are correct with 
high probability. 

The idea is to construct a "random" 
path from the starting point to the finish- 
ing point. First we must go up or to the 
right; by flipping a coin or rolling some 
dice we might decide to go right. Again 
there are two choices, and half the time 
we will go up. From here there are three 
possibilities, and we may choose from 
these at random, say to the right. And so 
on. Figure 2 shows the first random path 
I generated in this way. At each choice 
point of Fig. 2, I have written the number 
of alternatives present when the path got 
that far. For example, the 1's at the 
edges mean that there is only one way to 
go, since the other way either is already 
occupied or leads into a trap. 

The probability that this particular 
path would be obtained by such a ran- 
dom procedure is the product of all the 
individual probabilities at each choice 
point, namely 

1 1 1 1 1 1 1 
2 2 3 3 ''' 3 1 2 

= 2-343-24 

1/4,852,102,490,441,335,701,504 

about one chance in 5 x 1021. So I am 
pretty sure that you have never seen this 
particular path before, and I doubt if I 
will ever generate it again. 

In a similar vein, it is interesting to 
note that the great Mozart wrote a con- 
siderable amount of music that has never 
yet been performed. In one of his more 
playful moments, he specified 11 possi- 
bilities for each of the 16 bars of a waltz 
(11); the idea was that people from the 
audience should roll dice 16 times, 
obtaining a sequence of 16 numbers be- 
tween 2 and 12 inclusive, and the per- 
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Fig. 3. A second path, which would be ob- 
tained with probability w 3 x 10-12. 

formers would play the 16 bars corre- 
sponding to these respective rolls. The 
total number of ways to play Mozart's 
dice waltz is 2 xllI4 = 759,499,667, 
966,482 (12); so it is safe to say that 
fewer than one out of every million of 
Mozart's melodies will ever be heard by 
human ear. 

Actually I have a phonograph record 
that contains 36 randomly selected waltz- 
es from Mozart's scheme (13), and after 
hearing the fifth one or so I began to feel 
that the rest all sounded about the same. 
We might suspect that a similar thing will 
happen in this random path problem; all 
random paths from lower left to upper 
right might tend to look approximately 
like the first few. Figure 3 shows the 
second path I generated by making ran- 
dom choices; note that this one has quite 
a different character, and the strange 
thing is that the probability of obtaining 
it is more than ten orders of magnitude 
larger than we saw before. But still the 
probability is "negligibly small." 

The third path I generated in this way 
decided to get into a corner and to hug 
the edge. The fourth one had its own 
twist; and the fifth was reminiscent of the 
first. These paths are shown in Fig. 4; of 
course I am displaying here each path 
exactly as I obtained it, not suppressing 
any that were uninteresting or unexpect- 
ed, because the experiment must be un- 
biased. 

The difference between this game and 
Mozart's dice music is that we know of 
no way to generate a truly random path, 
in the sense that each path should occur 
with the same probability. Although we 
have seen that each path occurs with 
extremely small probability, virtually ze- 
ro, the actual probabilities differ from 
each other by many orders of magni- 
tude. 

If we want to estimate the total num- 

ber of possible paths, solely on the basis 
of these data, a theorem of statistics tells 
us that the best estimate is obtained by 
using the average value of the recipro- 
cals of the probabilities observed. Thus, 
although three of these five paths had 
probabilities around 10-11, suggesting 
that there are about 1011 possible paths, 
the much lower probabilities in the other 
two cases imply that it is much better to 
guess that there are about 1022 paths in 
all. Based on the five experiments I have 
described, the best estimate of the aver- 
age length of path will be about 70; and 
the best estimate of the chance that the 
point in the middle occurs somewhere on 
the path is that it almost always occurs, 
even though three-fifths of the experi- 
ments said the opposite. When large 
numbers like this are involved, we get 
into paradoxical situations, where the 
rules of statistics tell us that the best 
estimates are made by throwing away 
most of our data. 

As you might expect, five experiments 
are not enough to determine the answers 
reliably. But by using a computer to 
generate several thousand random paths 
in the same way, I am fairly confident 
that the total number of possible paths 
from lower left to upper right is 
(1.6 + 0.3) x 1024, and that the average 
length of path is 92 + 5. Conflicting evi- 
dence was obtained about the chance of 
hitting the center, but it seems that 
81 ? 10 percent of all paths do hit the 
center point. Of course, I have only gen- 
erated an extremely small fraction of 
these paths, so I cannot really be sure; 
perhaps nobody will ever know the true 
answer. 

The Shortest Paths 

For the next examples we will add 
weights to the lines in the grid. The basic 
diagram is shown in Fig. 5, where a 
random digit has been placed beside 
each line; these digits may be thought of 
as the lengths of roads between adjacent 
points of intersection. Thus, there are 
three roads of length 4 on the bottom 
line, and the upper part of the diagram 
contains three adjacent roads of length 0. 
Actually I must admit that the sequences 
of numbers are not completely arbitrary; 
for example, the reader might recognize 
1.414213562... in the top line as the 
square root of 2, and rr appears down the 
second column. For our purposes these 
digits will be random enough. 

The first problem we might ask about 
such a network of roads is: What is the 
shortest route from the lower left comer 
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to the upper right corner? We have esti- Connecting Points in a Network 
mated that there are some 1024 possible 
paths, and we might want to know which The next problem is somewhat harder. 
of these is shortest, using the given Suppose we want to construct electrical 
lengths. connections between all four of the cor- 

Fortunately we do not have to try all ner points in Fig. 5: What is the shortest 
possible paths to find the shortest; there electrical network joining these four 
is a simple method due to Dijkstra (14) points, sticking to the lines and distances 
which can be used to solve this problem shown? Such a network is usually called 
by hand in less than half an hour. The a Steiner tree (15), and Fig. 7 shows the 
answer (see Fig. 6) is a curious sort of shortest possible one. 
path, which might very well be missed if The number of possible Steiner trees 
one does not use a systematic method; it connecting the four corners is much 
is the only way to go from southwest to larger than the number of paths, but still 
northeast in a path of length 43. I am sure that this is the shortest. In this 

The idea underlying Dijkstra's method case I do not know how to compute the 
is rather simple. Suppose that at some shortest by hand, but a properly pro- 
stage we have found all positions at dis- grammed computer can do it in a few 
tance 20 or less, say, from the southwest seconds. 
corner. By looking at the roads con- We say that we have a "good" al- 
necting these points to the others it will gorithm for some problem if the time to 
be easy to see which points will be at solve it increases only as a polynomial in 
distance 21, and so on. You can imagine the size of the inputs; in other words, if 
a fluid spreading over the diagram at the doubling the size of the problem increas- 
rate of one unit of length per minute. es the solution time by at most a constant 

factor. There is a good algorithm to find 
Steiner trees connecting up to five 
points; it takes roughly n3 steps, where n 
is the total number of points in the net- 
work of roads (16). But if we want to 
connect larger numbers of points by Stei- 
ner trees, the computation rapidly gets 
larger; and when the number of points to 
be connected is, say, as large as n/10, no 
good algorithm is known. 

On the other hand, when our job is to 
find the shortest way to connect up all n 
of the points in the network, a good 
algorithm is available, again one that is 
so good it can be performed by hand in 
half an hour. 

A minimal connection of all points in a 
network is called a spanning tree, and in 
the particular network we are consid- 
ering it is possible to prove that the 
number of possible spanning trees is real- 
ly huge, more than 4 x 1052; in fact, the 
exact number (17) is 40,325,021,721,404, 
118,513,276,859,513,497,679,249,183,623, 
593,590,784 
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Fig. 4. Three more randomly generated paths, with their associated probabilities. 

1 4 1 4 2 1 3 5 6 2 
0 3 0 0 9 2 0 0 1 2 

1 7 3.. 2 0 5 0 8 0 7 

4 1 0 3 8 6 3 5 6 0 
2 2 3 6 0 6 7 9 7 7 

3 4 1 1 6 7 6 7 1 7 
3 1 6 2 2 7 7 6 6 0 

4 1 7 8 9 8 7 7 8 8 
1 2 5 9 9 2 1 0 4 9 

2 5 4 3 6 9 8 2-0 0 
1 4 4J 2 2 4 9 51 7 0 

9 9 5 0 0 3 7 1 3 8 
1 1 8 9 2 0 7 1 1 5 

4 2 3 9 4 8 9 5 3 6 
0 6 9 3 1 4 7 1 8 0 

4 6 2 8 4 5 4 6 9 9 
1 0 9 8 6 1 2 2 8 8 

8 5 9 8 0 3 4 6 8 2 
2 3 0 2 5 8 5 0 9 2 

1 3 2 6 1 4 1 4 8 1 
1 4 41 2 6 9 5 40 4 0 

1 4 1 4 2 1 3 5 6- 2 
0 3 0 0 9 2 00 0O 21 2 

1 7 3 2 0 5 0 8 0 7 

4 1 '0 3 8 6 3 5 6 0 
2 2 3 6 0 6 7 9 7 7 

3 4 1 1 6 7 6 7 1 7 
3., 1, 6 2 2 7 7 6 6 0 

4 11 7 8 9 8 7 7 8 8 
1 2 5 9 9 2 1 0 4 9 

2 5 4 3 6 9 8 2 0 0 
1 41 4 2 2 4 9 5 7 0 

9 9 5 0 0 3 7 1 3 8 
1 1 8 9 2 0 7 1 1 5 

4 2 3 9 4 8 9 5 3 6 
0 6 9 3 1 4 7 1 8 0 

4 6 2 8 4 5 4 6 9 9 
1 0 9 8 6 1 2 2 8 8 

8 5 9 8 0 3 4 6 8 2 
2 3 0 2 5 8 5 0 9 2 

1 3 2 6 1 4 1 4 8 1 
1 4 4 2 6 9 5 0 4 0 E_.. 1'3Ii _| _I, 

1 4 1 4 2. 1 3_ 5_ 6_ 2 
0 3 0 0 9 2 0 0 1 2 

1 7 3 2 0 5 0 8 0 7 

4 1 0 3 8 6 3 5 6 0 
2 2 3 6 0 6 7 9 7 7 

3 '4 1 1 6 7 6 7 1 7 
3 1 6 2 2 7 7 6 6 0 

4 1 7 -8 9 8 7 7 8 8 
1 2 5 9 9 2 1 0 4 9 

2 5 4 3 6 9 8 2 0 0 
1 4 4 2 2 4 9 5 7 0 

9 9 5 '0 5 0 3 7 1 3 8 
1 1 8 9 2 0 7 1 1 5 

4 2 3 9 <4 8 .9 5 3 6 
0 6 9 3 1 4 7 1 8 0 

4 6 2 8 4 5 4 6 9 9 
1 0 9 8 6 1 2 2 8 8 

8 5 9 8 0 3 4 6 8 2 
2 3 0 2 5 8 5 0 9 2 

1 3 2 6 1 4 1 4 8 1 
1 4 4 2 6 9 5 0 4 0 

0 

3 

6 

6 

5 

Fig. 5 (left). Network to be used in subsequent examples, based on 20 mathematical constants. Fig. 6 (middle). The shortest route from lower 
left to upper right in this network of roads. Fig. 7 (right). The shortest way to connect the four corners. 
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1 4 1 4 2 1 3 5 6 2 

0 3 0 0 9 2 0 0 1 2 I 
1 7 3 2 0 8 0 7 

4 1 0 3 8 6 3 5 6 0 
2 2 3 6 0 6 7 9 7 7 

3 4 1 1 6 7 6 7 1 7 
3 1 6 2 2 7 7 6 6 0 

4 1 7 8 9 8 7 7 8 8 
1 2 5 9 9 2 1 0 4 9 

2 5 4 3 6 9 8 2 0 0 
I 4 4 2 2 4 9 5 7 0 

9 9 5 O 0 3 7 1 3 8 
1 1 8 9 2 0 7 1 1 5 

4 2 3 9 4 8 9 5 3 6 
0 6 9 3 1 4 7 1 8 0 

4 6 2 8 4 5 4 6 9 9 
1 0 9 8 6 1 2 2 8 8 

8 5 9 8 0 3 4 6 8 2 
2 3 0 2 5 8 5 0 9 2 

1 3 2 6 1 4 1 4 8 1 
1 4 4 2 6 9 5 0 4 0 

0 

3 

6 

6 

5 

p 
0 

3 

6 

6 

1 

2 

9 

2 

0 

1 4 1 4 2 1 3 5 6 2 

0 3 0 0 9 2 0 0 1 2 
1 7 3 2 0 5 0 8 0 7 

4 1 0 3 8 6 3 5 '6 
2 2 3 6 0 6 7 9 7 7 

3 4 1 1 6 7 6 7 1 
3 1 6 2 2 7 7 6 6 0 

4 1 7 8 9 8 7 7 8 8 
1 2 5 9 9 2 1 0 4 9 

2 5 4 3 6 9 8 2 0 0 
1 4 4 2 2 4 9 5 7 0 

9 9 5 0 0 3 7 1 3 8 
1 1 8 9 2 0 7 1 1 5 

4 2 3 9 4 8 9 5 3 6 
0 6 9 3 1 4 7 1 8 0 

4 6 2 8 4 5 4 6 9 9 
1 0 9 8 6 1 2 2 8 8 

8 5 9 8 0 3 4 6 8 2 
2 3 0 2 5 8 5 0 9 2 

1 3 2 6 1 4 1 4 8 1 
1 4 4 2 6 9 5 0 4 

1 4 1 4 2 1 3 5 6 2 

3 o 0 9 2 0 ' 1 2 
1 7 3 2 0 5 0 8 0 7 

4 1 0 3 8 6 3 5 6 0 
2 2 3 6 0 6 7 9 7 7 

3 4 1 6 7 1 7 
3 1 6 2 2 7 7 6 6 0 

4 1 78 198 7 7 8 8 
1 2 5 9 9 2 1 0 4 9 

2 5 4 3 6 9 8 2 0 0 
1 4 4 2 2 4 9 5 7 0 

9 9 5 0 0 3 7 1 3 8 
1 1 8 9 2 0 7 1 1 5 

4 2 3 9 4 8 9 5 3 6 
0 6 9 3 1 4 7 1 8 0 

4 6 2 8 4 5 4 6 9 9 
1 0 9 8 6 1 2 2 8 8 

8 5 9 8 0 3 4 6 8 2 
2 3 0 2 5 8 5 0 9 2 

1 3 2 6 1 4 1 4 8 1 C 
1 4 4 2 6 9 5 0 4 0 

Fig. 8 (left). A minimum spanning tree. Fig. 9 (middle). The best choice of 60 nonoverlapping lines in the diagram. Fig. 10 (right). A shortest 
path from lower left to upper right, touching each point just once. 

Yet we can find the best one, in a remark- 
ably easy way discovered by Kruskal 
(18): simply consider all the lines one by 
one in order of increasing length, starting 
with the shortest one, then the next 
shortest, and so on. In case of ties be- 
tween lines of the same length, use either 
order. The rule is to include each line in 
the spanning tree if and only if it con- 
nects at least two points that are not 
connected by a path of previously se- 
lected lines. This is called the greedy 
algorithm because it is based on the idea 
of trying the best conceivable possi- 
bilities first. Such a policy does not al- 

ways solve a combinatorial problem- 
we know that greed does not always pay 
off in the long run-but in the case of 
spanning trees the idea works perfectly 
(see Fig. 8). 

Maximum Matching 

Another problem on this network for 
which a good algorithm is available is to 
choose 60 of the lines with the maximum 

possible sum, no two overlapping. We 

may think now of the points as people, 
instead of as cities, and the numbers now 
measure the amount of happiness gener- 
ated between one person and his or her 
neighbor. The idea is to pair off the 

people so as to get the maximum total 
happiness. If men and women alternate 
in the diagram, with men at the corners, 
there will be 61 men and 60 women in all, 
so one man will have no partner; he 
makes a personal sacrifice for the greater 
good of the group as a whole. There are 
exactly 1,801,272,981,919,008 ways to 
do such a pairing, according to a mathe- 
matical theory worked out to solve a 
physical problem about crystals (19); 
Fig. 9 exhibits the best one. 
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It turns out that the circled man is the 
best to omit, and the others should pair 
up in this way. Once again we are able to 
find the optimum solution in 1 or 2 sec- 
onds on a computer if we use a suitable 
algorithm, even though the number of 
possible arrangements is far too large to 
examine exhaustively. In this case the 
algorithm is somewhat more subtle than 
the ones I have discussed earlier, but it is 
based on simple ideas. First we add a 

"dummy" woman who will be paired 
with the man who gets no real woman. 
The happiness rating is 0 between the 

dummy woman and every man. Then if 
we add or subtract some number from all 
the happiness ratings touching any partic- 
ular person, the solution to the problem 
does not change. A clever way of adjust- 
ing these scores can be used so that all 61 
of the ratings for the couples matched 
here are 9, and all the other ratings are 9 
or less (20). 

An Apparently Harder Problem 

From these examples, one might get 
the idea that a good algorithm can be 
found for virtually any combinatorial 

problem. Unfortunately this does not ap- 
pear to be true, although I did want to 
demonstrate that considerable progress 
has been made toward finding good meth- 
ods. The next problem seems to be much 
harder: What is the shortest path from 
the lower left corner to the upper right 
corner that passes through all 121 points 
of the grid exactly once? 

This is called the traveling salesman 

problem, because we might think of a 
salesman who wants to visit each city 
with minimum travel time. The problem 
arises frequently in industry-for ex- 

ample, when the goal is to find the best 

order in which to do n jobs, based on the 
costs of changing from one job to anoth- 
er. But it has resisted all attacks; we 
know how to solve medium-sized prob- 
lems, but the algorithms are not good in 
the technical sense since the running 
time goes up rapidly on large cases. 

The traveling salesman's path shown 
in Fig. 10 is as short as possible, and it 
required several minutes of computer 
time to verify the fact. To my knowl- 
edge, this is the largest network for 
which the traveling salesman problem 
has yet been solved exactly. I used a 
method suggested in 1971 by Held and 
Karp (21), based on a combination of 
ideas we have applied to other problems: 
it is possible to add or subtract numbers 
from all the lines which touch a particu- 
lar point, without changing the shape of 
the minimum tour, and we can use the 
greedy algorithm to construct a mini- 
mum spanning tree for the changed dis- 
tances. The minimum spanning tree is no 

longer than the shortest tour, since every 
tour is a spanning tree; but by properly 
modifying the distances we can make the 
minimum spanning tree very nearly a 
tour, so comparatively few possibilities 
need to be tried. I extended the Held and 

Karp method to take advantage of the 
fact that each point has at most four 
neighbors. In this way it was possible to 

verify at reasonable cost that this tour is 

optimum; but if I were faced with a 

larger problem, having say twice as 

many points to visit, there would be no 
known method to get the answer in a 
reasonable amount of time. 

In fact, it may well be possible in a few 
years to prove that no good algorithm 
exists for the traveling salesman prob- 
lem. Since so many people have tried for 
so many years to find a good algorithm, 
without success, the trend is now to look 
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for a proof that success in this endeavor 
is impossible. It is analogous to the ques- 
tion of solving polynomial equations: 
quadratic equations were resolved in an- 
cient Mesopotamia, and the solution of 
cubic and quartic equations was found at 
the beginning of the Renaissance, but 
nobody was able to solve arbitrary equa- 
tions of the fifth degree. Finally, during 
the first part of the 19th century, Abel 
and Galois proved conclusively that 
there is no way to solve fifth degree 
equations in general, using ordinary 
arithmetic (22). It is now believed that 
there is no good algorithm for the general 
traveling salesman problem, and we are 
awaiting another Abel or Galois to prove 
it. 

In support of this belief, several impor- 
tant things have already been proved, 
notably that the traveling salesman prob- 
lem is computationally equivalent to hun- 
dreds of other problems of general inter- 
est (23). If there is a good algorithm for 
any one of these problems, which for 
technical reasons are called NP-com- 
plete problems, then there will be good 
algorithms for all the NP-complete prob- 
lems. Thus, for example, a good al- 
gorithm for the traveling salesman prob- 
lem would lead immediately to a good 
algorithm for many other difficult prob- 
lems, such as the optimum scheduling of 
high school classes, the most efficient 
way to pack things into boxes, or the 
best Steiner trees connecting a large 
number of points. A good solution to any 
one of these problems will solve them 
all, so if any one of them is hard they all 
must be. 

A Provably Harder Problem 

In recent years, certain problems 
have, in fact, been shown to be in- 
trinsically hard, in the sense that there 
will never be a fast way to solve them. 
Probably the most interesting example of 
this type was developed in 1974 by A. 
Meyer and L. J. Stockmeyer (24). The 
problem is to decide whether or not cer- 
tain logical statements about whole num- 
bers 0,1,2,.... are true or false, even 
when the form of these statements is 
severely restricted. 

Here are some examples of the sort of 
statements we must deal with. 

048 < 1063 

a statement which is clearly true. 

Vn Hm(m < n+1) 

This is logical shorthand that can be 
translated as follows, for people who are 
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PUT LOGICAL STATEMENTS OF LENGTH 617 IN HERE 

A2 A . . . . . 617 

6-bit encoding of each symbol 

BLACK BOX CONTAINING ELECTRICAL CIRCUITS 
TO DECIDE TRUTH OR FALSITY 

AND NOT 

THE ANSWER (TRUE OR FALSE) 
COMES OUT HERE 

Fig. 11. Electrical network to decide the cor- 
rectness of logical statements containing 617 
characters or less. 

not familiar with the new math: "For all 
numbers n there exists a number m such 
that m is less than n + 1." It is clearly a 
true statement, since we may take m 
equal to n. 

Vn Em(m+ 1 < n) 

"For all numbers n there exists a number 
m such that m + 1 is less than n." This 
statement is false, for if n = 0 there is no 
number less than zero; we are consid- 
ering only statements about nonnegative 
numbers. 

The next example is a little more com- 
plicated. 

Vx Vy(y > x+2 -> Ez(x < z A z < y)) 

"For all numbers x and all numbers y, if 
y is greater than or equal to x + 2 then 
there exists a number z such that x is less 
than z and z is less than y." In other 
words, if y is at least 2 more than x, there 
is a number z between x and y, and this is 
obviously true. 

Finally we can also make statements 
about sets of numbers; for example 

VS(tx(xeS) -* 

EIy(yeS A Vz(zeS -> y < z)) 

"For all sets S of numbers, if there exists 
a number x such that x is in S then there 
exists a number y such that y is in S and 
for all numbers z in S we have y < z." 
Informally, the statement says that every 
set of numbers which is not empty has a 
smallest element, and this is true. 

The logical statements we shall be con- 
cerned with cannot be essentially any 
harder than these examples; they may 
not involve subtraction, multiplication, 
or division; they cannot even involve 
addition except addition of a constant. 
(They cannot involve the formulax + y.) 
Thus the statements must be very 
simple-much, much simpler than those 
used every day by mathematicians con- 
structing proofs of theorems. 

According to a well-known theorem of 

Buchi (25), it is possible to decide in a 
finite number of steps whether or not any 
statement of the simple kind we have 
described is true or false, even though 
these logical statements may concern in- 
finitely many cases. 

But the new theorem says that it is 
impossible actually to do this in the real 
world, even if we limit ourselves to state- 
ments that can be written in no more 
than 617 symbols: "No realistic al- 
gorithm will ever be able to decide truth 
or falsity for arbitrary given statements 
of length 617 or less." 

In order to understand exactly what 
this theorem means, we have to know 
what it means to speak of a "realistic" 
algorithm. The theorem of Meyer and 
Stockmeyer is based on the fact that 
anything that can be done by computer 
can be done by constructing an electrical 
network, and so they envisage a setup 
like that shown in Fig. 11. At the top of 
such a device, one can insert any state- 
ment whose truth is to be tested. The 
logical language involved here makes use 
of 63 different symbols, including upper 
and lower case letters and a blank sym- 
bol, so we can place the statement (fol- 
lowed if necessary by blanks) into a se- 
quence of 617 positions. Each position is 
converted into six electrical pulses, 
whose configuration of "on" and "off" 
identifies the corresponding character; 
thus, the letter X might be represented 
by the six pulses "off, on, on, off, off, 
on." The resulting 6 x 617 pulses now 
enter an electrical network or "black 
box" consisting of AND, OR, and NOT 
circuits; AND produces a signal that is 
"on" only when both inputs to AND are 
"on," OR produces a signal that is "on" 
when either or both of its inputs are 
"on," and NOT changes "on" to "off' 
and vice versa. At the bottom of the 
network, a pulse comes out which is 
"on" or "off' according to whether the 
given logical statement of length 617 was 
true or false. 

According to Biichi's theorem, it is 
possible to construct such an electrical 
network with finitely many components, 
in a finite amount of time. But Meyer and 
Stockmeyer (24) have proved that every 
such network must use at least 10125 com- 
ponents, and we have seen that this is 
much larger than the number of protons 
and neutrons in the entire known uni- 
verse. 

Thus it is hopeless to find an efficient 
algorithm for this finite problem. We 
have to face the fact that it can never be 
done-no matter how clever we may 
become, or how much money and energy 
is invested in the project. 
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What should we do in the face of such 
limitations? Whenever something has 
been proved impossible, there is an as- 

pect of the human spirit that encourages 
us to find some way to do it anyway. In 
this particular case, we might try the 

following sneaky approach: We could 
build an electric circuit which gives the 
correct answer in all simple cases and 
which gives a random answer, true or 
false, in the other cases. Since the prob- 
lem is so hard, nobody will be able to 
know the difference. 

But this is obviously unsatisfactory. A 
better approach would be to distinguish 
between levels of truth; for example, the 
answer might be "true," "false," or 

"maybe." And we could give various 
shades of "maybe," saying perhaps that 
the statement is true in lots of cases. 

Let us consider the traveling salesman 

problem again. It is reasonably likely 
that, some day, somebody will prove 
that no good algorithm exists for this 

problem. If so, that will be a truly great 
theorem; but what should we do when 
we actually need to solve such a prob- 
lem? 

The answer, of course, is to settle for a 
tour that is not known to be the shortest 

possible one, but is pretty close. It has 

recently been observed that we can 

quickly find a traveling salesman's tour 
that is guaranteed to be no worse than 50 

percent longer than the shortest possible 
tour, if the distances satisfy the triangle 
inequality. And algorithms have recently 
been developed for other problems that 

give answers which are probably cor- 

rect, where the degree of probability can 
be specified, but the answer is not cer- 
tain. 

In this way, computer scientists and 
mathematicians have been learning how 
to cope with our finite limitations. 

Summary 

By presenting these examples, I have 
tried to illustrate four main points. 

1) Finite numbers can be really 
enormous, and the known universe is 
very small. Therefore the distinction be- 
tween finite and infinite is not as relevant 
as the distinction between realistic and 
unrealistic. 

2) In many cases there are subtle 
ways to solve very large problems quick- 
ly, in spite of the fact that they appear at 
first to require examination of too many 
possibilities. 

3) There are also cases where we can 
prove that a fairly natural problem is 
intrinsically hard, far beyond our con- 
ceivable capabilities. 

4) It takes a good deal of skill to de- 
cide whether a given problem is in the 
easy or hard class; but even if a problem 
does turn out to be hard there are useful 
and interesting ways to change it into 
one that can be done satisfactorily. 
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