
have developed could then serve to 
measure that contribution. We have no 

way of knowing the degree to which the 
other subjects in the main body of our ex- 
periment made pursuit movements de- 
spite the fixation instructions and the fix- 
ation point. This auxilliary experiment 
shows that the Johansson effect cannot 
be explained solely as the cancellation of 
the stimulus motion by effects of pursuit 
eye movements. 

A second substantive finding in these 
data is that, because of the stationary 
point D, there is no common vector 
greater than zero. Thus the results do not 

support an explanation of the Johansson 
effect in terms of an automatic vector ex- 
traction applied over the entire field of 
view. Perhaps the vector-extraction mod- 
el must be phrased in more local terms 
(for example, beyond some distance, the 
points do not affect each other), or per- 
haps it must take the observer's in- 
tention into account. 

Both findings call for quantitative 
measurement under a wider range of con- 
ditions before we can essay a more ade- 

quate theory. Our method should prove 
valuable for that purpose and for the 
more general problem of determining the 
stimulus and task factors responsible for 
the organization of motion perception. 
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head movements. The working precision varies 
with subject and configuration; in this experi- 
ment, changes in horizontal eye direction of 
0.36? could always be detected. An eye patch 
occluded the right eye. The stimulus field was no 
longer in complete darkness (as it was in the first 
experiment). Instead, the infrared illuminator of 
the eye movement monitor introduced a dim vis- 
ible haze through which the stimulus dots ap- 
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Ever since Theel defined the deep-sea 
holothurian order Elasipoda (1), the bi- 
zarre variations in body form of these un- 
usual animals have been of great interest 
to zoologists who study morphology (1, 
2). Indeed, one can hardly invoke a less 
appropriate term than "sea cucumber" 
to describe the translucent, vertically ori- 
ented, free-swimming forms (Fig. 1), 
which we saw in all directions from a 
deep sea submersible cruising near the 
sea floor, 2000 m deep off San Clemente 
Island. The real significance of being sur- 
rounded by living hordes of an organism 
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known previously from only a handful of 
preserved specimens (3), is that we now 
have a record for the existence of a sub- 
stantial population (4) of relatively large 
deep-sea organisms, living in close asso- 
ciation with the sea floor, yet scarcely 
considered (5) in the various models of 
energy exchange proposed for the deep 
ocean (6). This oversight is undoubtedly 
due to the fact that deep-sea near-bottom 
communities (within 200 m of the bot- 
tom) have not been routinely or effective- 
ly sampled. 

A series of dives in Deep Submer- 
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Abstract. Observations in situ confirm the swimming andfeeding behavior in pre- 
viously unreported dense assemblages of the holothurian Peniagone diaphana, at a 
depth of 2000 meters, off southern California. Proximate analysis of captured speci- 
mens indicates that this organism may represent a numerically significant, but low 
organic content member of many near-bottom deep-sea communities. 
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Table 1. Chemical composition of Peniagone diaphana. Analyses were made by means of stan- 
dard methods (21). Caloric contents were estimated from lipid (9.3 kcal/g), carbohydrate (4.1 
kcal/g), and protein (4.7 kcal/g) contents. The high values of carbon and nitrogen relative to 
carbohydrate, lipid, and protein suggests that there may be a substantial amount of small nitro- 
gen-containing organic molecules, presumably amino acids. 

Animal number 
Parameter measured 

1 2 3 Mean 

Length (total, cm) 7.3 5.0 6.0 6.1 
Wet weight (g) 35.7605 13.1056 12.4244 20.4302 
Dry weight (g) 1.3771 0.5040 0.4526 0.07779 
Ash weight (g) 1.0894 0.3902 0.3572 0.6123 
Water (% wet weight) 96.15 96.15 96.36 96.22 
Carbohydrate (% wet weight) 0.0093 0.0117 0.0065 0.0092 
Lipid (% wet weight) 0.1173 0.0598 0.0957 0.0909 
Protein (% wet weight) 0.0416 0.1397 0.0801 0.0871 
Carbon (organic, % wet weight) 0.0732 0.1436 0.1192 0.1120 
Nitrogen (organic, % wet weight) 0.0291 0.0534 0.0404 0.0410 
Kilocalories per 100 g (wet weight) 1.32 1.26 1.39 1.32 

gence Research Vessels (DSRV) Turtle 
and Sea Cliff (7) provided three of us 
(A.T.B., L.B.Q., J.J.C.) with the oppor- 
tunity to observe, photograph (8), and 
capture (9) specimens of an elasipod hol- 
othurian (Figs. 1 and 2) encountered as 
dense aggregations (4) extending up to 70 
m above the sea floor off Southern Cali- 
fornia. Subsequent examination of live 
and preserved specimens (10) revealed 
that all of them belong to the species 
Peniagone diaphana (Theel) (11). 

The rotund body of P. diaphana is 
slightly compressed dorso-ventrally and 

constricted anteriorly prior to expanding 
into the sharply peaked prominence ante- 
rior and dorsal to the mouth (Fig. 2). The 
mouth itself is surrounded by a circlet of 
ten short tentacles, each of which ends in 
fine subdivisions. Posteriorly, the anus 
opens dorsally, just at the base of the flat- 
tened, paddlelike postanal fan, whose 
distal edge consists of eight fingerlike ex- 
tensions of the body wall (Fig. 2). 

In order to visualize accurately the be- 
havior of P. diaphana, it is necessary to 
remember that we have described this an- 
imal as if it were a conventional "sea cu- 

cumber," that is with the mouth oriented 
ventrally and the body resting horizontal- 
ly on interradii ABE. All of the hundreds 
of Peniagone viewed, 0.5 cm to > 15 cm 
long (12), held the long axis of their bod- 
ies vertically, swimming in the water col- 
umn through an activity best described 
as slow, simultaneous stroking with oral 
tentacles and postanal fan. We found 
that regardless of size, active P. dia- 
phana comb the water column at a 
steady 10 to 20 cycles per minute (13). 
This behavior was not altered when the 
submarine was motionless on the bottom 
or when the external viewing lights 
would suddenly be switched on after a 
period of "no light" observations. Dur- 

ing more than 12 hours of combined bot- 
tom diving time (14), we never observed 
Peniagone with its body in a horizontal 
orientation, or in contact with the sub- 
strate. Moreover, since the most violent 
activity observed (tail-to-head flexures at 
- 2 seconds each) created barely suf- 
ficient thrust to propel a large specimen 2 
meters from the approaching submarine, 
we emphasize that these organisms can- 
not be considered to be truly active 
swimmers (nekton), but rather macro- 
plankton. 

Appreciation of the fine interaction be- 
tween oral tentacles and postanal fan 
may be gained most readily from Fig. 3, 
A to F (15). During the raising and exten- 

Fig. 2 (left). General anatomy of adult Peniagone diaphana from off 
Southern California. (A) Living, shipboard specimen viewed from rightrtica, 

side. (B) Ventral view of live shipboard specimen ofP. diaphana. Most 
prominent of the internal organs visible through the semitransparent 
body wall of living specimens are the five thin, diagnostic longitudinal 
muscle bands (1m) the conspicuously pigmented intestinal tract (i)1 
with its characteristic loop midway between mouth (m) and anus (a), 
and in larger specimens, delicate pink branches of the reproductive system (g) clustered near the base of the oral tentacles (ot). Fig. 3 (right). 
Photographic sequence of in situ swimming-feeding cycle characteristic of Southern California Peniagone diaphana (15). This cycle consists of 
slow, rhythmic, simultaneous raising, extending, and lateral expanding of oral tentacles and postanal fan (B to D) from vertical, downward 
pointing "rest" position (A and F). Time from rest position (A) to full expansion (D) was typically 5 to 6 seconds with the same time required for 
the return to "rest." The movement of the postanal fan presumably serves to counteract the shifting of the body axis which would result from 
activity of the oral tentacles alone. 
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sion stage, the oral tentacles not only 
shift position from vertical to horizontal 

(Fig. 3, B and C), but elongate and 

spread laterally, ultimately forming a 
thin horizontal fan (Fig. 3D). Parallel ac- 

tivity occurs in the slightly less exten- 
sible postanal fan, again with coinci- 
dence between maximum extension and 
lateral spreading. Simultaneous down- 
stroke (Fig. 3E) then brings both the oral 
tentacles and postanal fan into the verti- 
cal plane (Fig. 3F) completing the cycle. 
Since virtually all active, undisturbed 
(16) specimens observed were in various 

stages of this same slow, rhythmic strok- 
ing, we assume this behavior must affect 
not only locomotion, but also facilitate 
respiration and generate whatever water 
currents are necessary for near-bottom 
(suspension) feeding. Those few inactive 
animals observed (17) were all in the ter- 
minal position (Fig. 3F) with oral ten- 
tacles and postanal fan down, but they 
still remained off the bottom in a vertical 
orientation. 

Both the relatively delicate morpholo- 
gy and generally low level of activity 
seen in P. diaphana fit current concepts 
of energy conserving adaptations to such 

low-energy environments as the deep sea 
(18). Just how little energy may be re- 

quired to maintain a population of a giv- 
en deep-sea organism is demonstrated by 
the results of proximate analyses of three 

freshly frozen specimens of P. diaphana 
(Table 1). These results indicate the con- 
tent of organic matter in P. diaphana is 
extremely low, and, presumably, the me- 
tabolism is also low. 

The notion that P. diaphana survives 
on an extremely low energy budget 
seems inescapable-more problematic is 
the source of this low energy food. The 
guts of most animals viewed in situ were 
distended with material, which, on the 
basis of analysis (by D.L.P.), after cap- 
ture was composed of sponge spicules, 
holothurian spicules, diatom frustules, 
foraminiferan shells, and unidentifiable 
material. Finding sponge and holothu- 
rian spicules in the gut material suggests 
that the food ofP. diaphana is of benthic 
origin. Further evidence of the sedimen- 
tary nature of the food comes from both 
the low carbon content (5.45 percent, 
dry weight) and high ratio of C to N 
(10.9) of the intestinal contents (19). Hav- 
ing never encountered P. diaphana in 
contact with substrate, we must con- 
clude that near-bottom water move- 

ments suspend sufficient bottom detritus 
to meet the dietary requirements of this 

unexpected, apparently widespread (20), 
population of deep-sea macroplanktonic 
"dirigibles." 
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