
and fusion of material must have oc- 
curred during shatter cone formation (4), 
especially in the shale horizon where the 
argillaceous material apparently facilitat- 
ed melting. This explanation agrees with 
the observation of Friedman et al. (5) 
who suggested that "impurities" in 
quartzose sandstones facilitated glass 
formation during frictional sliding. The 
destruction of the spherules by later 
shearing movements or compaction was 
apparently prevented by the fact that the 
shatter cone event was accompanied by 
considerable dilation across the individ- 
ual surfaces. The resultant open spaces 
have remained sufficiently open during 
the subsequent history of the rocks for 
the spheres to be preserved. This argu- 
ment is consistent with shatter cone for- 
mation during the passage of a shock 
wave and subsequent decompression. 

The occurrence of the spherules in the 
Vredefort collar rocks indicates that an 
event of cataclysmic violence occurred 
during the formation of the Vredefort 
structure. At first sight, this event corre- 
lates with the meteorite impact origin 
proposed by Daly (6) and Dietz (7). How- 
ever, there is a body of evidence that the 
Vredefort region incorporated a singular 
igneous and metamorphic center before 
the shatter cone event (8), and the possi- 
bility of an internal origin for the struc- 
ture should not be discounted. 
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Sodium Liquid Ion Exchanger Microelectrode Used 

to Measure Large Extracellular Sodium Transients 

Abstract. A new liquid membrane microelectrode has been developed that is easily 
fabricated and can measure fast sodium transients in the presence of potassium inter- 
ference. It responds to a sudden change in sodium activity within I second. The elec- 
trode has been used to provide the first direct evidence of large sodium transients in 
the extracellular space of the brain of the catfish. 
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ctive electrodes are being tantly, when subjected to a sudden 
ed in many areas of biological change in K+ activity, a Na+-sensitive 
on (1). Liquid ion exchanger glass electrode displays an emf (electro- 
trodes are very useful in these motive force) transient which decays to 
ns because of their ease of fab- an equilibrium value in 30 seconds and 
). At present, however, micro- represents a diminished (1:1) Na+:K+ 

capable of measuring Na+ selectivity (4). Furthermore, in the pres- 
nade from Na+-sensitive glass ence of K+, the response time to a sud- 
;lass electrodes suffer from sev- den change in Na+ activity may be in- 
backs. Although they have tip creased by a factor of 100 (4). Clearly, 
of about I Am, they commonly Na+ changes on the order of seconds can- 
tive lengths of 10 Am or more not be recorded with a Na+-sensitive 
ficult to fabricate. Most impor- glass electrode that requires minutes to 

respond. 
We alleviated all of these difficulties 

by fabricating a Na+-selective liquid ion 
exchanger microelectrode. This elec- 
trode incorporates as the ion exchanger a 

,+0.1 M 10 percent (weight to weight) solution of 
KCI monensin in nitrobenzene. Monensin is a 

e//# ~ biologically active compound produced 
Pure Na CI--/ . / by Streptomyces cinnamonensis (5) that 

t/, / preferentially binds Na+ (6) and has been 
4? 1 0 M proposed for use in macroelectrodes (7). 

/"* KCI oMonensin is commercially available as 
the sodium salt (8) and can be readily 
converted to the free acid as used here 

7~~~/ /^~ ~(9). 
The electrode is made by introducing 

the exchanger into presiliconized micro- 
25 50 100 250 pipettes (10, 11). The electrode is filled 

Concentration (mM) with 150 mM NaCl and positioned with a 

>5 250 25 mM NaCI reference micropipette filled with 150 
mM NaC2HOs2 and 2 mM CaCl2 (12). Dif- 
fusion from the reference pipette does 

I> not influence the ion electrode. Elec- 
[\E trodes with tips 1 to 2 /am in diameter are 

X _glued using rapid-setting epoxy with a tip 
_spacing of less than 10 ,um and con- 

4 seconds nected via Ag-AgCl wires to buffer ampli- 
fiers having a gain of unity and an ultra- 

5 250 25 mM NaCI low capacity (13). The reference signal is 
+ + electronically subtracted from the ion 

3 10 10 mM KCI electrode signal to yield the pure Na+ sig- 
_M~ - _?~ y nal ( 1). The electrode can be used imme- 

> diately and still displays slopes greater 
E than 50 mv per decade change in Na+ af- 

ter 24 hours. 
L' V-The emf of a typical electrode as a 

4 seconds function of Na+ concentration is shown 

Response to the Na+ electrode to by the solid line in Fig. 1A. A linear re- 
iolutions (solid line) and to NaCl in gression line with a slope of 58.9 mv per 
e of 0.1M KC1 (short dashes) and decade change in Na+ was obtained at 
long dashes). (B) Response of the 25?C for the range 25 to 250 mM. The ef- ) a step change (25 to 250 mM) in a step change (25 to 250 mnM) in fect of including 0. IM or 1LGM KCI in the 
tesponse of the electrode to a step t of cludg M or 1.OM KC in the 
to 250 mM) in NaCl in the pres- NaCl solutions is shown by the dashed 
nM KCI. lines (14). 
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Fig. 2. Simultaneous recording 
of slow potentials and the Na+ 
signal during spreading depres- v 
sion. The upper trace (V) 
shows the slow potential dur- N 
ing spreading depression elic- Na 
ited by KC1 microinjection 
(KC1). The lower trace shows 
the [Na+]0 decrease recorded KCI 
on a logarithmic scale. 

We determined selectivity constants 
by comparing the response of the elec- 
trode to step changes (25 to 250 mM) in 
Na+ activity with constant concentra- 
tions (0. IM and 1.OM) of background in- 
terference. These measurements in- 
dicate that the electrode has a selectivity 
ratio against K+ of 15:1 at 0.1M and 
13:1 at 1.OM and selectivity ratios at 
I.OM interference of 143:1 for Ca2, 
154:1 for NH4+, 14:1 for H+, and 7:1 
for Mg2+. 

The electrode responds to a sudden 
change in Na+ activity within 1 second 
(Fig. lB) (15). No anomalous behavior 
was found in the response of the elec- 
trode to K+. The time constant of the 
electrode is unchanged when it experi- 
ences a change in Na+ activity in the 
presence of K+ (Fig. 1, B and C). The re- 
sistance of the Na+ electrode was not 
systematically measured, although it al- 
ways showed more noise than both K+ 
and C1- liquid ion exchanger micro- 
electrodes which have resistances of 109 
to 1010 ohms. The electrode was not sen- 
sitive to protons from pH 5 to 9. Thus 
this electrode has a superior response 
and Na+: K+ selectivity as compared to a 
recently reported liquid membrane Na+- 
selective macroelectrode (16). 

To demonstrate the utility of the elec- 
trode in biological systems, we recorded 
changes in extracellular sodium ([Na+]0) 
during spreading depression (11, 17) in 
the catfish cerebellum. Large (75 to 100 
mM) decreases in extracellular chloride 
([Cl-]0) associated with large (40 to 60 
mM) increases in extracellular potassium 
([K+]0) have been recorded during 
spreading depression (1I). This finding 
suggests that a large shift in [Na+]0 
should be associated with this change in 
[K+]o and [C1-]o. 

Using the same experimental para- 
digm as described in (11), we recorded a 
resting [Na+]0 level of 149 mM, which 
fell to around 57 mM during spreading de- 
pression (Fig. 2). This shift of 92 mM in 
[Na+]0 can account for the majority of the 
shifts in [K+]0 and [Cl-]0; furthermore, it 
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shifts in [K+]0 and [Cl-]0; furthermore, it 
supports recent data on changes in cere- 
bral impedance measured during spread- 
ing depression (18). 

This large shift in [Na+]0 casts doubt 
on the tendency to regard the extracellu- 
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lar space of the brain as a homogeneous 
ionic milieu. In addition, such a change 
may have a profound influence on synap- 
tic function and neural transmitter trans- 
port and metabolism. This Na+-sensitive 
electrode provides the first direct evi- 
dence of a large Na+ shift in the extra- 
cellular space during spreading depres- 
sion. 
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The complex 2-hydroxyethanethiolato- 
2,2' ,2"-terpyridineplatinum(II) {[(terpy)- 
Pt(HET)]+} has been shown to bind to 
double-stranded DNA's by intercalating 
between adjacent base pairs and unwind- 
ing the double helix (1). The behavior of 
this metallointercalation reagent is simi- 
lar in many respects to that of classical 
organic intercalators such as ethidium 
bromide (2). The electron-dense plati- 
num atom in [(terpy)Pt(HET)]+, more- 
over, gives rise to intense, near-meri- 
dional reflections at 10.2 A in x-ray dif- 
fraction patterns of highly oriented DNA 
fibers containing this reagent (3). The 
existence of these reflections supports 
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the neighbor exclusion binding model 
(4), in which the intercalators occupy 
every other site between base pairs in 
the DNA duplex at saturation. 

The study reported here expands the 
class of known metallointercalation re- 
agents to include 2,2'-bipyridineethyl- 
enediamineplatinum(II) {[(bipy)Pt(en)]2+} 
and 1,10-phenanthrolineethylenediam- 
ineplatinum(II) {[(o-phen)Pt(en)]2+}, com- 
plexes that are doubly charged and con- 
tain only one chelate ring (5). In these 
two complexes, as in [(terpy)Pt(HET)]+, 
the aromatic ligands lie strictly in the 
coordination plane of the metal atom. The 
closely related complex bis(pyridine)- 
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Stereochemical Requirements for Intercalation of Platinum 

Conplexes into Double-Stranded DNA's 

Abstract. The complexes 1,10-phenanthrolineethylenediamineplatinum(II) and 
2,2'-bipyridineethylenediamineplatinum(II) have a planar, aromatic ligand system 
that facilitates intercalation, as shown by their ability to unwind closed circular du- 
plex DNA. Nonbonded steric interactions can rotate the pyridine ligands out of the 
coordination plane in bis(pyridine)ethylenediamineplatinum(II), thus preventing in- 
tercalation. Fiber x-ray diffraction patterns of the two metallointercalators indicate 
that the binding is governed by the neighbor exclusion principle. 
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