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Colligative Properti 
of Simple Solutio 

Solutes simply dilute the solvent; they do 
cause tension in the solve 

Frank C. Andr 

In a recent article, Hammel (1) dis- 
cusses the colligative properties of solu- 
tions with the goal of obtaining an in- 
tuitive, physical explanation of vapor 
pressure lowering, osmotic pressure, 
boiling point elevation, and freezing 
point depression. Hammel's view ex- 
tends a picture painted in a number of 
papers by Scholander and his co-work- 
ers (2). Hammel argues that dissolving 
substance 2 (solute) in substance 1 
(solvent) lowers the chemical potential 
A,1 of the solvent by creating a negative 
pressure or tension that acts upon the 
solvent molecules. In this article I dem- 
onstrate that the conclusions Hammel 
draws from his thought experiments are 
by no means necessary. I show that the 
generally accepted molecular picture of 
pressure, vapor pressure, osmosis, boil- 
ing, and freezing in solutions is simple, 
intuitive, involves no mysterious solvent 
tensions, and explains the phenomena. 
The solute simply lowers the concentra- 
tion of the solvent in the solution as 
compared to pure solvent. The colliga- 
tive properties follow directly from this 
dilution of solvent by solute. 

Thermodynamics of Colligative Properties 

Hammel begins by observing that va- 
por pressure lowering, osmotic pressure, 
boiling point elevation, and freezing 
point depression are quantitatively re- 
lated, which "suggests that they have a 
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Here a reasonable approximation is of- 
ten to take v 1soln as independent ofp (that 
is, an incompressible solution) and in- 
deed to approximate it by the molar vol- 
ume of pure solvent, v1solvent. If the 
solvent flux is halted instead by an ex- 

'iCes cess negative pressure or tension n ap- 
plied to the solvent phase, the corre- 

ins sponding relation becomes 

rP? 
v ,solvent(p/ -dp 

Jpo-l 

/xsolvent(p0,T) _ ,lsoln(0,pO,T ) (2b) 

The osmotic equilibrium is achieved lo- 
cally, at the membrane, by the equality 
of Ix1 in the solutions immediately in 
contact with it. 

The depression of the freezing point of 
a solution from To to T at constant pres- 
sure p by the addition of solute of mole 
fraction x2, which does not enter the 
solvent crystal, is given by 

T Ahlfus 
- J T ". = 

,Lsolvent(pO,) - ,isoln(x2,pO,T) 

common explanation." Indeed, the ther- 
modynamics of colligative properties is 
well known (3) and shows that they have 
precisely the same explanation: 

The lowering of the vapor pressure of 
a solvent fromp 1? top 1 upon the addition 
of nonvolatile solute of mole fraction x2 
at constant temperature is given exactly 
by 

r [VlvaP(p,T) - VlSoln(x2,p, )]dp = 
J1 

1lSolvent(pl?O,) 
- 

LiS?ln(X2,P 1? ) (1) 

Here v 1vap is the molar volume of solvent 
in the vapor, v 1son is the molar volume of 
solvent in the solution, Als?in is the chem- 
ical potential of solvent in the solution, 
1lsolvent is the chemical potential of pure 

solvent, and T is the temperature. Of 
course, one can often neglect v son" com- 
pared to v 1va and use either the ideal gas 
law or some other simple empirical equa- 
tion of state for v 1vaP(p, T) to carry out the 
integration. 

Osmosis involves the equilibrium be- 
tween two phases of solute mole frac- 
tions x2 and 0, through a membrane per- 
meable to solvent only. The difference in 
g, in the phases leads to solvent flux 
through the membrane into the solution, 
which flux can be halted by an excess 
pressure n on the solution phase (in 
which the pressure is p0). The equilibri- 
um is governed exactly by the thermody- 
namic relation 

v1soln(x2,p,T)dp = 

psolvent( (X2, (2a) 
?solvent(p?,T _ -^soln(x,p?,T) (2a) 

Here Ah f"us is the molar heat of fusion of 
pure solvent at p? and T'. A reasonable 
approximation to the integrand in many 
cases is to take Ah1fus as temperature- 
independent. 

Similarly, the elevation of the boiling 
point of a solution from To to T at con- 
stant pressure p0 brought about by the 
addition of nonvolatile solute of mole 
fraction x2 is given by 

ST Ahlvap 
T dT' = 

lSOvent(pO, ) - soln(x ,pO ) Al solvent(P0, ) - .1soln (X,pO, T) (4) 

Here Ah 1vap is the molar heat of vaporiza- 
tion of pure solvent at p0 and T'. In this 
case also, the approximation that Ahiva 
is independent of T is often made. 

The right-hand sides of Eqs. 1 through 
4 have exactly the same form; thus, for a 
given solution, the left-hand sides must 
all be equal. The "common explanation" 
of these four phenomena lies therefore in 
the decrease in pt1 upon the dissolving of 
solute in the solution, thus diluting the 
solvent. It is precisely this decrease that 
I will explore here, following Hammel's 
arguments so far as possible. In the pro- 
cess I will also have occasion to consider 
the effects of positive and negative pres- 
sures on solutions. 
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Hammel's Thought Experiment 

Hammel first introduces the following 
thought experiment, shown in Fig. 1 [fig- 
ure 2 in (1)]: Pure liquid solvent fills a 
closed chamber to a height 0. Three up- 
right cylinders equipped with fixed mem- 
branes permeable only to solvent stand 
with their bases beneath the solvent sur- 
face. The chamber above the solvent and 
cylinders is filled with solvent vapor. 

Cylinder 1 has the membrane at height 
0 and is filled with a solution made from a 
solute whose partial molar volume is the 
same as that of the solvent, so that the 
solution density does not change with 
height from that of the pure solvent. The 
height h at which the solution stands 
above the solvent level is determined by 
solution concentration so that the os- 
motic pressure II is exactly pgh (p is the 
density of pure solvent and g is the accel- 
eration of gravity) plus the difference in 
vapor pressure at the two heights: 

n = pgh + pvap(h) - paP(0) 

pgh + pvaP(O)(e-Mig^RT - 1) (5) 

where M1 is the molecular weight of 
solvent and R is the gas constant. The 
validity of the term pgh for hydrostatic 
head and the barometric formula used in 
Eq. 5 are well known (4). The second 
term on the right-hand side of Eq. 5 is 
usually negligible compared to pgh. 

Cylinder 2 has the membrane just be- 
low height h. On top of the membrane is 
a very thin layer of the same solution 
that fills cylinder 1. Beneath the mem- 
brane is pure solvent. This solvent has 
the same density as the solution filling 
cylinder 1 (5), so that the solvent just 
below the membrane in cylinder 2 is at a 
pressure of pvaP(O) - pgh. In this case, 
the column of solvent is supported from 
the top by the membrane, so that the 
weight of liquid below leads to negative 
pressure which becomes less negative as 
one goes down the column. The negative 
pressure works in the same way as the 
negative of a positive pressure in estab- 
lishing osmotic equilibrium, as shown by 
Eq. 2b. The solution just above the mem- 
brane has the pressure pvaP(h), and so 

Eq. 5 for the osmotic equilibrium is satis- 
fied. 

Cylinder 3 has its membrane at height 
0 and is filled to height h with a solution 
of a different solute in the same solvent. 
The concentration of solution is chosen 
so that /usoln at height h equals the value 
of ,usoln at height h in the other columns 
[and of course -LvaP(h) as well], so that 
all three liquid surfaces exposed at h are 
mutually in equilibrium with each other 
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Fig. 1. Three columns fitted with membranes 
permeable to solvent only, immersed in 
solvent, filled with liquids, exposed to solvent 
vapor: A thought experiment employed by 
Hammel (1). 

through the vapor. The solute molecules 
in cylinder 3 are chosen to be much 
denser than those in cylinders 1 and 2. 
Thus the solvent concentration is lower 
at height 0 in column 3 than it is in 
column 1. However, there is a larger 
hydrostatic head in column 3 because the 
solution is denser, and the effects of 
greater head and smaller concentration 
cancel precisely, as they must, to assure 
equilibrium across the membrane at the 
base of the column. 

At this point, Hammel draws a series 
of conclusions reminiscent of specula- 
tions of Noyes (6) and Hulett (7). How- 
ever, there is no mystery about the states 
of the columns, the vapor pressure over 
them, or the osmotic equilibria within 
them. It is well known (4) that equilibri- 
um in the presence of g is governed by 
the equation 

g.i + Mgz = constant (6) 

as opposed to the same expression with- 
out the Migz term in the absence of 
gravity. Here Mi is the molecular weight 
of substance i, and z is the height. 

From Eq. 6 we can conclude the fol- 
lowing: For any equilibrium system in 
the earth's gravitational field which can 
be viewed as a set of subsystems, consid- 

4-- Ye 

Fig. 2. Potential energy of interaction U(y) 
between a molecule and the test surface as a 
function of the distance y between molecule 
and surface. 

er the group of all subsystems free to 
exchange substance i among themselves, 
however or wherever in the system this 
interchange can occur. These subsys- 
tems may contain any number of walls, 
phase transitions, semipermeable mem- 
branes, or other substances dissolved 
therein. At any fixed height z in the 
system at equilibrium, ui will have the 
same value in each subsystem into which 
it is possible for substance i to get. 
Across each membrane permeable to i, 
the equilibrium will be governed by the 
equality of xui on each side. Across each 
phase boundary the equilibrium will be 
governed by the equality of gi in each 
phase. The value of ui depends only on z 
and not on the choice of subsystem. 
Equilibrium is maintained in each small 
region of a subsystem; it depends on 
local properties and not on properties in 
a distant part of the subsystem. 

This conclusion from thermodynamics 
eliminates any sense of mystery or won- 
der from Hammel's thought experiment. 
He compares columns 1 and 3 and says 
they invalidate any explanation in which 
II is attributed to the concentration of 
solute molecules at the membrane and 
simultaneously in which the vapor pres- 
sure lowering is attributed to the solute 
concentration at the surface. Yet those 
are precisely the causes to which they 
must be attributed. The larger II across 
the membrane at the bottom of column 3 
as compared to column 1 is required by 
the greater solute concentration at the 
membrane in column 3 and is maintained 
by the greater density of the solution in 
column 3. It is true, of course, that sub- 
jecting solvent to a tension of II, as just 
below the membrane in column 2, per- 
mits an osmotic equilibrium with the lay- 
er of solution under its vapor pressure 
just above the membrane. But there is no 
suction on the solution above the mem- 
brane from the solvent below. The pur- 
pose of the membrane is precisely to 
eliminate such suction. Pressure differ- 
ences are sustained by the membrane, 
whereas diffusive flow of solvent is per- 
mitted through it. Just because adding 
solute to solvent affects ,ti the same way 
as a negative pressure (tension) on the 
solvent would is no reason to believe 
that the solute creates a tension. 

Next, Hammel considers the question 
of whether one can equate the vapor 
pressure at the surface of the solution 
with the solvent pressure at the surface. 
The difficulty with this question is that 
there is really only a pressure in the 
solution as such-it is caused by both 
solvent and solute-and it compresses 
both solvent and solute alike. It is arti- 
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ficial to attempt to distinguish between 
solvent pressure and solute pressure. In 
his attempt to do this, Hammel con- 
cludes that dissolving solute in water 
somehow creates a tension on the water 
molecules, a conclusion that is inconsist- 
ent with the carefully refined quantum 
mechanical model of molecules and how 
they interact with each other, and with 
the statistical mechanical model of how 
these interactions give solutions their 
unique properties. I now briefly summa- 
rize the intuitive picture painted by statis- 
tical mechanics of liquids, their pres- 
sures and tensions, vapor pressures, os- 
motic pressures, boiling points, and 
freezing points. 

Pressure and Tension in Pure Liquids 

Suppose one wants to measure the 
pressure in a pure liquid solvent. This 
requires insertion of a test surface of 
known area into the liquid in the region 
of interest. The force exerted by the 
solvent molecules on the surface in the 
direction normal to it is measured. The 
pressure in the liquid is this force divided 
by the area of the test surface. Each 
solvent molecule interacts with the test 
surface through a potential energy, U(y), 
where U changes with distance y from 
the surface in the manner shown in Fig. 
2. The force exerted by the molecule on 
the surface is the negative of the slope of 
this curve, and so, at separation dis- 
tances less than Ye, molecules exert a 
positive force on the surface (that is, 
they push on it); at distances greater than 
Ye, molecules exert a negative force on 
the surface (that is, they pull on it). At 
any instant one obtains the total force on 
the test surface from the y values of all 
the neighboring molecules by summing 
the forces (slopes) obtained from Fig. 2. 

In most conditions where the pressure 
is positive, the forces from molecules 
whose y < ye outweigh the forces from 
molecules whose y > Ye. Although there 
is a greater number of the latter, their 
attractive forces are smaller than the re- 
pulsive forces of the former, and so the 
pressure is positive (8). 

In conditions like that prevailing in the 
solvent of column 2 (Fig. 1) where pres- 
sure is negative, solvent molecules are 
pulled apart a bit from each other and the 
surface. Even a very tiny expansion of 
the liquid changes the weighted average 
distance separating the molecules from 
just less than Ye to just greater than Y,. 
This change leads to a negative, rather 
than positive, net force on the wall and 
thus to a negative pressure (tension). 
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Pressure and Tension in Solutions 

Now suppose one adds solute mole- 
cules to the solvent. These solute mole- 
cules interact with each other, with 
solvent molecules, and with the test sur- 
face through potentials shaped generally 
like that in Fig. 2, but with different well 
depths, different Ye values, and other 
minor differences. The force on the test 
surface now arises from both solvent and 
solute molecules. Nothing is changed ex- 
cept that there are two kinds of mole- 
cules, each contributing to the total pres- 
sure. This is true regardless of whether 
that pressure is positive or negative. Any 
part of the solution (solvent or solute) is 
under an average pressure which is this 
total pressure of the solution. There is no 
way to distinguish between solvent pres- 
sure, solute pressure, or total pressure in 
the solution. They are the same. This is 
important enough to emphasize: The av- 
erage pressure on any small portion of 
the solution equals the average pressure 
on a solvent molecule in that portion 
equals the average pressure on a solute 
molecule in that region equals the macro- 
scopic pressure as measured in that re- 
gion of the solution. There is no way that 
particles interacting through inter- 
molecular potentials such as those of 
Fig. 2 can sustain different pressures on 
solute and solvent in fluids at equilibri- 
um. 

Vapor Pressure of Solutions 

If pure solvent is sealed into an evacu- 
ated chamber, some tiny fraction of the 
molecules in the surface acquire enough 
thermal energy through random motion 
to break out of the potential wells of their 
neighbors and enter the vapor. As the 
pressure in the vapor increases, the rate 
at which vapor molecules collide with 
the surface and stick increases. Even- 
tually, the rates of evaporation and con- 
densation become equal, and the equilib- 
rium pressure is the vapor pressure of 
the solvent at this temperature. 

Now, suppose we add nonvolatile so- 
lute to the solvent. In an ideal (Raoult's 
law) solution, solute molecules occupy 
the same fraction of the surface as their 
mole fraction (in a Henry's law solution, 
these fractions are not necessarily the 
same but they are proportional). The rate 
of evaporation of solvent is reduced by 
the mole fraction of solute. For the mo- 
ment, however, nothing has changed in 
the vapor, and so it continues to con- 
dense at the same rate as before the 
addition. Thus, the pressure decreases 

until a new equilibrium is reached in 
which the rate of condensation is also 
reduced by the mole fraction of the so- 
lute. Since the rate of condensation is 
proportional to pressure (9), the final 
vapor pressure is also reduced by the 
solute mole fraction (for ideal solutions 
and ideal vapor). 

Another way to view this situation is 
that the solute molecules dilute the 
solvent, thus decreasing tlsoln. Since 
A,soln is a measure of the driving force for 
the molecular transport of solvent, a low- 
er concentration of solvent must lower 
the value of 1s?"ln. The only change of 
pressure in the solution on the addition 
of solute comes from the decreased va- 
por pressure, which has a trivial effect on 

1lsoln. Were the pressure on the solvent 
to be drastically decreased as well, there 
would be two causes for ,.lsolvent to 
drop-the dilution of solvent and the 
decreased solvent pressure. There is no 
need to postulate a solvent tension; there 
is, to my knowledge, no mechanism 
whereby solvent tension is consistent 
with molecular theory, and solvent ten- 
sion would lead to twice the actual de- 
crease of ,i slvent observed for solutions. 

Osmotic Pressure 

Suppose a solvent-filled vessel is di- 
vided into two parts (A and B) by a 
membrane permeable to solvent only. 
Solvent flows at equal rates through the 
membrane from A into B and from B into 
A. Now suppose we add solute to B. At 
any given time, the fraction of the pores 
or channels through the membrane from 
B which are blocked by solute and thus 
cannot pass solvent is x2. Thus the flow 
from B to A is cut by x2. However, there 
is no change in A, and so the flow from A 
to B continues at the same rate. A net 
flow from A to B results, and, if the 
pressures remain equal on the two sides, 
this flow will continue at a decreasing 
rate as the solution in B is enriched in 
solvent. 

However, if through any mechanism 
the pressure is allowed to increase in B, 
solvent molecules are pushed into the 
membrane with the extra force represent- 
ed by the steeper slope (Fig. 2) for 
y < Ye This increases the rate of solvent 
flow from B into A. Eventually an equi- 
librium is reached in which the decrease 
of flow caused by pore blockage by so- 
lute is exactly balanced by the increase 
of flow caused by increased pressure. 
This excess pressure is I. This is what 
happens in columns 1 and 3 of Hammel's 
example. 
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Similarly, instead of increasing the 
pressure in B, we could decrease the 
pressure in A or even turn it into a 
tension. This would pull the solvent 
molecules in A away from the membrane 
with forces represented by the attractive 
region of Fig. 2 (y > Ye). This tension 
decreases the rate of solvent flow from A 
to B and can also lead to an equilibrium 
(as happens in column 2 of Hammel's 
example). As before, the pressure in B is 
higher than that in A by H; the pressure 
difference is simply achieved by a ten- 
sion on A rather than a pressure on B. 

The above phenomenon could have 
been discussed in terms of the effect of 
concentration and pressure on ,lso?n. In- 
creased pressure increases the driving 
force for the flow of solvent and thus 
increases /lso?n, and decreased pressure 
similarly decreases ,ls?ln. 

is, the solute is incompatible with the 
crystal lattice and thus is excluded from 
it. The solute in no way affects the solid 
solvent, and so the rate of molecules 
leaving the solid for the liquid is un- 
changed. The solute, as before, dilutes 
the solvent in the liquid. Solvent bathes 
only a fraction of the crystal surface, and 
so the rate of molecules leaving the solu- 
tion for the solid is decreased. The net 
result is a melting of the solid, which will 
disappear completely if temperature re- 
mains fixed. The melting of the solid, 
however, removes thermal energy from 
the system and lowers the temperature 
until a new equilibrium is achieved. Thus 
the freezing point of a solution is de- 
pressed over that of pure solvent. 

Entropy of Solution 

without heat evolution; thus AHsoln (the 
enthalpy change) = 0 [for example, see 
(3), p. 191]. Thus, for the solution pro- 
cess, 

AGsoln = AHsoln - TASsoln = 

N,kT en x1 + N2kT en X2 (11) 

The Gibbs free energy G of any equilibri- 
um system is [for example, see (3), chap- 
ter 13] 

G = lniLi 
i 

(12) 

where ni is the number of moles of i and 
Ai is the partial molar Gibbs free energy. 
Thus, if we choose pure solvent and pure 
solute (x, = 1, x2 = 1) as the standard 
states for them, the concentration depen- 
dence of A, can be expressed simply by 

i1 = I? + RT n xI (13) 

Boiling Point Elevation 

No liquid is stable at finite temperature 
in the absence of an applied pressure that 
holds it together. Indeed, whenever the 
applied pressure on a liquid is less than 
the equilibrium vapor pressure of the 
liquid at the given temperature (vapor 
pressure as measured above), the liquid 
structure is unstable and the liquid will 
boil. Thus the boiling point is the temper- 
ature at which the vapor pressure of a 
liquid equals the applied pressure on the 
liquid. 

Consider pure solvent under a fixed 
external pressurep 0. At its boiling point, 
To, the vapor pressure of the solvent will 
be p0. If we now add nonvolatile solute, 
the vapor pressure of the resulting solu- 
tion is lowered, as we saw above. The 
temperature To, which was the boiling 
point of the pure solvent, is now below 
the boiling point of the new solution. So 
long as the pressure stays fixed atp?, the 
solution must be heated to a temperature 
above To in order for its vapor pressure 
to become equal to what it was before 
the addition of solute. Thus To increases 
when nonvolatile solute is added to 
solvent. 

Freezing Point Depression 

At the freezing point of pure solvent, 
lsolid = lliquid; this is the condition for 

which the rate at which molecules are 
leaving the solid for the liquid exactly 
balances the rate at which molecules are 
leaving the liquid to enter the solid. Now 
let us add solute to the liquid, the solute 
being of such nature that it does not 
enter the solvent crystal structure, that 
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One can obtain an intuitive picture of 
the entropy change AS,soln that occurs 
upon formation of an ideal solution by 
using Boltzmann's expression, kfnW, 
for entropy [for example, see (9), p. 59]. 
Here k is Boltzmann's constant and W is 
the degeneracy of the thermodynamic 
state. The solution of N1 solvent mole- 
cules and N2 solute molecules has one 
source of degeneracy that the pure 
solvent and pure solute do not. That is 
the fact that of the (N1 + N2) sites of 
molecules in the solution, N1 of these are 
occupied by solvent and N2 by solute. 
The number of different ways of assign- 
ing (N1 + N2) sites into groups of N1 and 
N2 is 

(N1 + N2)! 
N1! N2! 

This feature, the dilution of solvent by 
solute and solute by solvent, contributes 

ASsoln (N + N 
k nWs ,,, = k en ( N2 7) 

Nl! N2! 

to the entropy of the solution. Use of 
Stirling's approximation for the large fac- 
torials yields 

ASsoln = 

k enl 
N, + N2 

N+N2 e 
N 

(e 
N(8) e ken)(N./ <8Ni) 

ASsoln = 

k en N1 
+ 

N2N 
N + 

N?N2 N21 (9) 

ASsoln = - N1k tn x, - N2k n x2 (10) 

where x1 is the mole fraction of solvent. 
For the formation of ideal solutions, this 
is the only contribution to AS. A proper- 
ty of ideal solutions is that they form 

where ,1?, is equal to the molar Gibbs 
free energy of pure solvent and R = Nok, 
where No is Avogadro's number. 

The entire decrease in L,l on dissolving 
solute in solvent to form an ideal solution 
is due to the dilution of the solvent by the 
solute. This dilution does not affect H or 
p. It simply increases the randomness by 
offering a larger number of sites for 
solvent molecules than were present in 
the pure solvent. This increases the S of 
the solvent, which in turn decreases 

usoln 

Ascent of Sap in Trees 

Just because solutes do not exert ten- 
sion on solvents does not mean that solu- 
tions cannot be under tension, for ex- 
ample, in living systems. The data of 
Scholander and his co-workers (2) or 
Plumb and Bridgman (10) suggest that 
columns of water exist under tension in 
some plants. But the cause of sap flow in 
such plants is simpler than the solvent 
tension model of Hammel. We can liken 
the columns in Fig. 1 to three trees. If the 
solvent vapor above them were any less 
dense, solvent would evaporate from 
their surfaces (leaves). This would lower 
k1soln at the surfaces. Since lso?lvent at the 
bases of the columns (roots) is unaf- 
fected and so is the gravitational poten- 
tial, solvent is driven up the columns 
(trees). In column 2, this would occur 
through a general bulk flow up the col- 
umn, driven by an increase in tension as 
solvent moves upward. In columns 1 and 
3, there would also be upward bulk flow 
of solution, driven by the decreasing 
pressure. Since this flow would drag so- 
lute along, the solute would have to keep 
diffusing back against the flow in order to 
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maintain its previous equilibrium distri- 
bution, which is undisturbed by the evap- 
oration of solvent. Other modes of trans- 
port could also be imagined. The entire 
flow of solvent, or the flow in parts of the 
tree, could be diffusive. The tree or such 
regions of it would then resemble a very 
thick osmotic membrane. Solutes could 
be encountered by the solvent in various 
parts of the tree, separated from the rest 
by membranes. Such regions could re- 
semble parts of columns 1 or 3 of Fig. 1. 
Negative pressure could exist in regions 
of the sap, rather than in all of it, if those 
regions were properly separated from 
the rest by membranes. Such a region 
would resemble part of column 2. 

Indeed, in theory, water transport may 
occur in plants by various means. The 
overall constraint governing passive flow 
(as opposed to active transport) is al- 
ways Eq. 6, which in this case takes the 
form 

Aroot + Mghroot -= l.leaf + Mghleaf 
(14) 

Suppose, in order to find the maximum 
height to which the sap might rise, we 
take hroot to be zero and let the roots 
stand in a pool of water. In this case A 
for water at the root is the same as p for 
water vapor in saturated air, since those 
two phases would be in equilibrium with 
each other. Ifp0 is the vapor pressure of 
water at the temperature of interest and 
rpo is the actual partial pressure of water 
vapor in the air, then r is the relative 
humidity. We may use the expression 

AO? + RTCn p 

to express p for a dilute gas [for ex- 
ample, see (3), p. 181] where .o is , of 
the pure gas at a pressure of I atmo- 
sphere. Then Eq. 14 becomes 

P?0 + RT in Po = 

x?0 + RT n (rpo) + Mgh (15) 

Thus the maximum height to which wa- 
ter may be driven up a tree is 

h M= 
- 

n-) (16) 
Mg r 

At 25?C, this is 1.40 x 104 ?n (1/r) me- 
ters, which, for example, is 1475 meters 
at r = 90 percent. This value is the same 
regardless of whether the mechanism 
of flow of water up the tree is pres- 
sure-driven bulk flow or diffusive flow 
or any combination of the two. The val- 
ue is, of course, reduced if the tree 
stands in moist soil as opposed to a pool 
of water. 

Summary 

Vapor pressure lowering, osmotic 
pressure, boiling point elevation, and 
freezing point depression are all related 
quantitatively to the decrease in A,psoln 
upon the addition of solute in forming a 
solution. In any equilibrium system, re- 
gardless of whether it is in a gravitational 
field or whether it contains walls, semi- 
permeable membranes, phase transi- 
tions, or solutes, all equilibria are main- 
tained locally, in the small region of the 
equilibrium, by the equality of p.soln. If 
there are several subsystems in a grav- 
itational field, at any fixed height, /i will 
have the same value in each subsystem 
into which substance i can get, and 
wxi + Migh is constant throughout the en- 
tire system. 

In a solution, there is no mechanism 
by which solvent and solute molecules 
could sustain different pressures. Both 
the solvent and solute are always under 
identical pressures in a region of solu- 
tion, namely, the pressure of the solution 
in that region. Since nature does not 
know which component we call the 
solvent and which the solute, equations 
should be symmetric in the two (ac- 

knowledging that the nonvolatile com- 
ponent, if any, is commonly chosen to be 
solute). 

Simple molecular pictures illustrate 
what is happening to cause pressure (pos- 
itive or negative) in liquids, vapor pres- 
sure of liquids, and the various colliga- 
tive properties of solutions. The only 
effect of solute involved in these proper- 
ties is that it dilutes the solvent, with the 
resulting increase in S and decrease in 

lsoln. 

Water can be driven passively up a 
tree to enormous heights by the differ- 
ence between its chemical potential in 
the roots and the ambient air. There is 
nothing mysterious about the molecular 
bases for any of these phenomena. Biolo- 
gists can use the well-understood pic- 
tures of these phenomena with con- 
fidence to study what is happening in the 
complicated living systems they consid- 
er. 
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