
ably because it fails to cross the blood- 
brain barrier. With appropriate chemical 
modification, DALA could, conceivably, 
give rise to a totally synthetic opiate 
peptide analgesic which would be active 
after systemic administration. 

It has long been known (19) that in- 
troduction of unnatural, D-amino acids 
into peptides can convey resistance to 
degradative enzymes. This principle has 
recently been applied to produce a po- 
tent analog of luteinizing hormone releas- 
ing hormone (LHRH) by substitution of 
Gly6 with D-Ala6 (20), resulting in resis- 
tance to enzymatic degradation (21). Pre- 
sumably, the methyl group of the D- 

alanine side chain of DALA is positioned 
so that opiate receptor recognition is rela- 
tively unhindered while enzymatic ac- 
cess to the critical Tyrt-Gly2 bond is 
blocked. In support of this explanation, a 
number of additional enzyme-resistant 
DALA analogs have been synthesized 
which contain position-2 substitutions 
by other D-amino acids, L-proline and 
sarcosine (22). 

Note added in proof: Also, a recent 
report of chemical analysis of enzymatic 
breakdown products of enkephalin (23) 
suggests that cleavage of the Tyr'-Gly2 
amide bond is the initial deactivation 
step. 
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the definition of the role of ascorbic acid 
(AA) in cell metabolism. 

Lycorine, an alkaloid extracted from 
Amarillidaceae, is a quite specific inhib- 
itor of AA biosynthesis (1). The physio- 
logical effects induced by lycorine in both 
plants (2) and animals (3) are probably 
due to this peculiar action. Therefore 
lycorine appears to be a good tool to de- 
termine what metabolic reactions in the 
cell are directly related to AA variations. 
We present data showing that the devel- 
opment of cyanide-insensitive respira- 
tion is a process closely controlled by 
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Table 1. Changes in the respiratory rate dur- 
ing the aerobic incubation of potato tuber 
slices. Respiratory rates were monitored fol- 
lowing the reduction of tetrazolium salts. Be- 
cause of the presence of phenol oxidase, this 
technique prevents interference from AA (if 
added). TTC and NBT (12), which are good 
electron acceptors (13, 14), were used. With 
this procedure, similar to Warburg manomet- 
ric technique, a fivefold increase of respira- 
tion was found. Cylinders of potato (Solanum 
tuberosum L.) tissue, 0.9 cm in diameter, 
were removed with a cork borer and sliced on 
a sliding microtome. The slices, 1 mm thick, 
were washed repeatedly in tap water and ei- 
ther used immediately ("fresh" slices) or 
maintained in water at 20?C for 24 hours, with 
air bubbled into the medium ("activated" 
slices). TTC and NBT reduction were assayed 
in small petri dishes maintained in vacuum for 
60 minutes (with fresh slices) and 30 minutes 
(with activated slices). Each dish contained 15 
slices and 15 ml of a solution of 0.04M phos- 
phate buffer (pH 7.0), 1 percent TTC, or 0.25 
percent NBT. The TTCH2 and NBTH2 were 
estimated according to Marr& and Arrigoni 
(13) and Lester and Smith (14), respectively. 
Weights are fresh weights. 

02 TTCH2 NBTH2 
(,ul/g (,^g/g (/g/g 

per hour) per hour) per hour) 

Fresh slices 
23* 48 118 

Activated slices 
110* 264 620 

*Data obtained by using Warburg manometric tech- 
nique. 

,a1 of 02 per hour per gram (Table 1). 
In fresh slices, respiration is almost 
completely inhibited by cyanide and in 
activated slices is only 25 to 35 per- 
cent inhibited. Hence, the term "cya- 
nide-insensitive respiration" has been 
used. 

During the period of aeration, the 
slices, while developing increased respi- 
ration, actively synthesize AA (1, 6). 
Adding lycorine inhibits AA biosynthesis 
(1) and, at the same time, prevents the 
development of respiration (Table 2). 
At 5 x 10-6M, the increase of respira- 
tion is almost completely inhibited. 
The similarity between the degree of 
inhibition of AA biosynthesis and that 
of the respiratory rise (Fig. 1) suggests 
that AA is required to develop KCN-in- 
sensitive respiration. Further support to 
this conclusion was obtained from the 
demonstration that the administration of 
AA prevents lycorine inhibition in slices 
of stored tubers. In fact, the 60 percent 
inhibition of respiration induced by 
2 ,iM lycorine is wholly prevented when 
1 mM AA is also added to the slices dur- 
ing the activation period. 

Still other data support this assump- 
tion. When slices from newly harvested 
potatoes are used, respiration rate in- 
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creases 11-fold, whereas it increases 5.3- 
fold in stored potato slices (Table 3); add- 
ing 2 ,JM lycorine inhibits only 12 per- 
cent in the former and almost 60 percent 
in the latter. 

Such diverse behavior of the two 
groups of slices can be accounted for by 
their different AA plus dehydroascorbic 
acid (DHA) contents. Slices from newly 
harvested potatoes contain much more 
AA than stored ones (Table 3), which 
is the reason for their low sensitivity 
to lycorine and for the strong rise in res- 
piration. 

The close relation between AA con- 
tent and the development of cyanide-in- 
sensitive respiration enables us to sug- 
gest that AA could be required for syn- 
thesis of proteins related to KCN- 
insensitive respiration. Click and Hack- 
ett (5) showed that the rise of respiration 
in potato slices depends on newly synthe- 
sized RNA and proteins; in fact, both 

actinomycin D and puromycin prevent 
the development of cyanide-insensitive 
respiration. Because lycorine also inhibits 
the increase of respiration while AA pre- 
vents this effect, it may be suggested 
that AA is somehow involved in the 

synthesis of the proteins linked to the 
development of cyanide-insensitive res- 

piration. In accordance with this, we re- 
ported earlier (7) that lycorine inhibits in- 
corporation of [14C]leucine in vivo, but 
that its effect on protein synthesis was 
indirect in that isolated polysomes were 
found to be lycorine-insensitive. Further, 
these data support the view that the ef- 
fects of lycorine in both plants and animals 
are mediated by the AA system (1, 8). 

KCN-insensitive respiration is not a 

Table 2. Effect of lycorine on development of 
respiration in slices from stored potato tubers 
(maintained at 10?C). Potato slices were kept 
in water or in lycorine for 24 hours. At the end 
of this period TTC reduction was evaluated. 
Lycorine did not affect the rate of respiration 
directly in either "fresh" or "activated" 
slices. In fact, when lycorine was added to the 
reaction medium during tetrazolium salts re- 
duction in vacuum, no difference was ob- 
served in the amount of TTCH2 formed. 
Weights are fresh weights. 

TTCH2 Percent 
Lycorine (ug/g per inhibi- 

(M) 30 minutes) tion 

Fresh slices 
None 23 None 

Activated slices 
Water only 122 None 

3 x 0-7 1 09 11 
5 x 10-7 96 21 

10-6 67 45 
2 x 10-6 52 57 
5 x 10-6 25 80 

Table 3. Relation between the AA plus DHA 
content and the development of KCN-in- 
sensitive respiration in potato tuber slices. 
The AA was assayed by the 2,4-dinitrophenyl- 
hydrazine reaction (1, 15); weights are fresh 
weights. 

TTCH2 Incre- AA + (/ig/g per ment DHA 30 minutes) of 
content 
(/Lglg) Fresh Activated resp- 

slices slices ration 

Stored potatoes 
85 26.2 138 5.3-fold 

Newly harvested potatoes 
335 30.2 334 11-fold 

peculiar process of the plant cell, but oc- 
curs in animal cells as well (9). Human 
granulocytes generate the superoxide 
necessary for phagocytic killing through 
a cyanide-insensitive respiration (10). 
Phagocytosis by granulocytes decreases 
when the AA content in the blood 
is low (11). We have some data show- 
ing that lycorine inhibits phagocytosis 
in rats. We therefore suggest that AA 
plays a role in the biosynthesis of the 
proteins (probably through proline hy- 
droxylation) related to KCN-insensitive 
respiration in both plants and animals. 
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