
Summary 

The ability to directly measure and 
evaluate ultrafast processes with unprec- 
edented time resolution and reliability 
has greatly extended our knowledge 
about the kinetics of primary processes 
in chemistry and allied physical and bio- 
logical sciences. Improvements in the 
reliability and versatility of picosecond 
techniques should lead to an increase in 
the experimental information about basic 
interactions in atomic and molecular sys- 
tems. 
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Perhaps one of the most striking differ- 
ences between a brain and today's com- 
puters is the amount of "wiring." In a 
digital computer the ratio of connections 
to components is about 3, whereas for 
the mammalian cortex it lies between 10 
and 10,000 (1). 

Although this fact points to a clear 
structural difference between the two, 
this distinction is not fundamental to the 
nature of the information processing that 
each accomplishes, merely to the particu- 
lars of how each does it. In Chomsky's 
terms (2), this difference affects theories 
of performance but not theories of com- 
petence, because the nature of a compu- 
tation that is carried out by a machine or 
a nervous system depends only on a 
problem to be solved, not on the avail- 
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able hardware (3). Nevertheless, one can 
expect a nervous system and a digital 
computer to use different types of al- 
gorithm, even when performing the same 
underlying computation. Algorithms 
with a parallel structure, requiring many 
simultaneous local operations on large 
data arrays, are expensive for today's 
computers but probably well-suited to 
the highly interactive organization of ner- 
vous systems. 

The class of parallel algorithms in- 
cludes an interesting and not precisely 
definable subclass which we may call 
cooperative algorithms (3). Such al- 
gorithms operate on many "input" ele- 
ments and reach a global organization by 
way of local, interactive constraints. The 
term "cooperative" refers to the way in 
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which local operations appear to cooper- 
ate in forming global order in a well- 
regulated manner. Cooperative phenom- 
ena are well known in physics (4, 5), and 
it has been proposed that they may play 
an important role in biological systems 
as well (6-10). One of the earliest sugges- 
tions along these lines was made by Ju- 
lesz (11), who maintains that stereo- 
scopic fusion is a cooperative process. 
His model, which consists of an array of 
dipole magnets with springs coupling the 
tips of adjacent dipoles, represents a sug- 
gestive metaphor for this idea. Besides 
its biological relevance, the extraction of 
stereoscopic information is an important 
and yet unsolved problem in visual infor- 
mation processing (12). For this rea- 
son-and also as a case in point-we 
describe a cooperative algorithm for this 
computation. 

In this article, we (i) analyze the com- 
putational structure of the stereo-dis- 
parity problem, stating the goal of the 
computation and characterizing the asso- 
ciated local constraints; (ii) describe a 
cooperative algorithm that implements 
this computation; and (iii) exhibit its per- 
formance on random-dot stereograms. 
Although the problem addressed here is 
not directly related to the question of 
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how the brain extracts disparity informa- 
tion, we shall briefly mention some ques- 
tions and implications for psychophysics 
and neurophysiology. 

Computational Structure of the 

Stereo-Disparity Problem 

Because of the way our eyes are posi- 
tioned and controlled, our brains usually 
receive similar images of a scene taken 
from two nearby points at the same hori- 
zontal level. If two objects are separated 
in depth from the viewer, the relative 
positions of their images will differ in the 
two eyes. Our brains are capable of mea- 
suring this disparity and of using it to 
estimate depth. 

Three steps (S) are involved in measur- 
ing stereo disparity: (S1) a particular lo- 
cation on a surface in the scene must be 
selected from one image; (S2) that same 
location must be identified in the other 
image; and (S3) the disparity in the two 
corresponding image points must be 
measured. 

If one could identify a location beyond 
doubt in the two images, for example by 
illuminating it with a spot of light, steps 
S and S2 could be avoided and the 
problem would be easy. In practice one 
cannot do this (Fig. 1), and the diffi- 
cult part of the computation is solving 
the correspondence problem. Julesz 
found that we are able to interpret ran- 
dom-dot stereograms, which are stereo 
pairs that consist of random dots when 
viewed monocularly but fuse when 
viewed stereoscopically to yield patterns 
separated in depth. This might be 
thought surprising, because when one 
tries to set up a correspondence between 
two arrays of random dots, false targets 
arise in profusion (Fig. 1). Even so, we 
are able to determine the correct corre- 
spondence. We need no other cues. 

In order to formulate the correspon- 
dence computation precisely, we have to 
examine its basis in the physical world. 
Two constraints (C) of importance may 
be identified (13): (Cl) a given point on a 
physical surface has a unique position in 
space at any one time; and (C2) matter is 
cohesive, it is separated into objects, and 
the surfaces of objects are generally 
smooth compared with their distance 
from the viewer. 

These constraints apply to locations 
on a physical surface. Therefore, when 
we translate them into conditions on a 
computation we must ensure that the 
items to which they apply there are in 
one-to-one correspondence with well-de- 
fined locations on a physical surface. To 
do this, one must use surface markings, 
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normal surface discontinuities, shadows, 
and so forth, which in turn means using 
predicates that correspond to changes in 
intensity. One solution is to obtain a 
primitive description [like the primal 
sketch (14)] of the intensity changes pres- 
ent in each image, and then to match 
these descriptions. Line and edge seg- 
ments, blobs, termination points, and to- 
kens, obtained from these by grouping, 
usually correspond to items that have a 
physical existence on a surface. 

The stereo problem may thus be re- 
duced to that of matching two primitive 
descriptions, one from each eye. One 
can think of the elements of these de- 
scriptions as carrying only position infor- 
mation, like the white squares in a ran- 
dom-dot stereogram, although in prac- 
tice there will exist rules about which 
matches between descriptive elements 
are possible and which are not. The two 
physical constraints C1 and C2 can now 
be translated into two rules (R) for how 
the left and right descriptions are com- 
bined: 

R1) Uniqueness. Each item from each 
image may be assigned at most one dis- 
parity value. This condition relies on the 
assumption that an item corresponds to 
something that has a unique physical 
position. 

R2) Continuity. Disparity varies 
smoothly almost everywhere. This condi- 
tion is a consequence of the cohesive- 
ness of matter, and it states that only a 
small fraction of the area of an image is 
composed of boundaries that are discon- 
tinuous in depth. 

In real life, R1 cannot be applied sim- 
ply to gray-level points in an image. The 
simplest counterexample is that of a gold- 
fish swimming in a bowl: many points in 
the image receive contributions from the 
bowl and from the goldfish. Here, and in 
general, a gray-level point is in only im- 
plicit correspondence with a physical lo- 
cation, and it is therefore impossible to 
ensure that gray-level points in the two 
images correspond to exactly the same 
physical position. Sharp changes in in- 
tensity are usually due either to the gold- 
fish, to the bowl, or to a reflection, and 
therefore define a single physical posi- 
tion precisely. 

A Cooperative Algorithm 

By constructing an explicit representa- 
tion of the two rules, we can derive a 
cooperative algorithm for the computa- 
tion. Figure 2a exhibits the geometry of 
the rules in the simple case of a one- 
dimensional image. Lx and Rx represent 
the positions of descriptive elements on 

the left and right images. The thick verti- 
cal and horizontal lines represent lines of 
sight from the left and right eyes, and 
their intersection points correspond to 
possible disparity values. The dotted 
diagonal lines connect points of constant 
disparity. 

The uniqueness rule R1 states that 
only one disparity value may be assigned 
to each descriptive element. If we now 
think of the lines in Fig. 2a as a network, 
with a node at each intersection, this 
means that only one node may be 
switched on along each horizontal or 
vertical line. 

The continuity rule R2 states that dis- 
parity values vary smoothly almost ev- 
erywhere. That is, solutions tend to 
spread along the dotted diagonals. 

If we now place a "cell" at each node 
(Fig. 2b) and connect it so that it inhibits 
cells along the thick lines in the figure 
and excites cells along the dotted lines, 
then, provided the parameters are appro- 
priate, the stable states of such a net- 
work will be precisely those in which the 
two rules are obeyed. It remains only to 
show that such a network will converge 
to a stable state. We were able to carry 
out a combinatorial analysis [as in (9, 
15)] which established its convergence 
for random-dot stereograms (16). 

This idea may be extended to two- 
dimensional images simply by making 
the local excitatory neighborhood two 
dimensional. The structure of each node 
in the network for two-dimensional im- 
ages is shown in Fig. 2c. 

A simple form of the resulting al- 
gorithm (3) is given by the following set 
of difference equations: 

(n + 1) = o-{(C()) + C}O (1) 

that is, 

X rIyd E L.r' (y' C - 
x dy' d'e.S(xYd) 

E C (n + C (0) xE yx'y'd' Oyyd 
x' y' d' E O(ryd) 

(2) 

where C(n) represents the state of the 
node or cell at position (x,y) with dis- 

parity d at iteration n, 1 is the linear 
operator that embeds the local con- 
straints (S and O are the circular and 
thick line neighborhoods of the cell xyd 
in Fig. 2c), E is the "inhibition" con- 
stant, and o- is a sigmoid function with 
range [0, 1]. The state Cr-(f, of the 
corresponding node at time (n + 1) is 
thus determined by a nonlinear operator 
on the output of a linear transformation 
of the states of neighboring cells at time 
n. 

The desired final state of the computa- 
tion is clearly a fixed point of this al- 
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gorithm; moreover, any state that is in- 
consistent with the two rules is not a 
stable fixed point. Our combinatorial 
analysis of this algorithm shows that, 
when cr is a simple threshold function, 
the process converges for a rather wide 
range of parameter values (16). The spe- 
cific form of the operator is apparently 
not very critical. 

Noniterative local operations cannot 
solve the stereo problem in a satisfactory 
way (11). Recurrence and nonlinearity 
are necessary to create a truly coopera- 
tive algorithm that cannot be decom- 
posed into the superposition of local op- 
erations (17). General results concerning 
such algorithms seem to be rather diffi- 
cult to obtain, although we believe that 
one can usually establish convergence in 
probability for specific forms of them. 

Examples of Applying the Algorithm 

Random-dot stereograms offer an ideal 
input for testing the performance of the 
algorithm, since they enable one to by- 
pass the costly and delicate process of 
transforming the intensity array received 
by each eye into a primitive description 
(14). When we view a random-dot stereo- 
gram, we probably compute a descrip- 
tion couched in terms of edges rather 
than squares, whereas the inputs to our 
algorithm are the positions of the white 

squares. Figures 3 to 6 show some exam- 
ples in which the iterative algorithm suc- 
cessfully solves the correspondence 
problem, thus allowing disparity values 
to be assigned to items in each image. 
Presently, its technical applications are 
limited only by the preprocessing prob- 
lem. 

This algorithm can be realized by vari- 
ous mechanisms, but parallel, recurrent, 
nonlinear interactions, both excitatory 
and inhibitory, seem the most natural. 
The difference equations set out above 
would then represent an approximation 
to the differential equations that describe 
the dynamics of the network. 

Implications for Biology 

We have hitherto refrained from dis- 
cussing the biological problem of how 
stereopsis is achieved in the mammalian 
brain. Our analyses of the computation, 
and of the cooperative algorithm that 
implements it, raise several precise ques- 
tions for psychophysics and physiology. 
An important preliminary point concerns 
the relative importance of neural fusion 
and of eye movements for stereopsis. 
The underlying question is whether there 
are many disparity "layers" (as our al- 
gorithm requires), or whether there are 
just three "pools" (18)-crossed, un- 
crossed, and zero disparity. Most physi- 

ologists and psychologists seem to ac- 
cept the existence of numerous, sharply 
tuned binocular "disparity detectors," 
whose peak sensitivities cover a wide 
range of disparity values (19, 20). We do 
not believe that the available evidence is 
decisive (21), but an answer is critical to 
the biological relevance of our analysis. 
If, for example, there were only three 
pools or layers with a narrow range of 
disparity sensitivities, the problem of 
false targets is virtually removed, but at 
the expense of having to pass the con- 
vergence plane of the eyes across a sur- 
face in order to achieve fusion. Psycho- 
physical experiments may provide some 
insight into this problem, but we believe 
that only physiology is capable of provid- 
ing a clear-cut answer. 

If this preliminary question is settled 
in favor of a "multilayer" cooperative 
algorithm, there are several obvious im- 
plications of the network (Fig. 2) at the 
physiological level: (i) the existence of 
many sharply tuned disparity units that 
are rather insensitive to the nature of the 
descriptive element to which they may 
refer; (ii) organization of these units into 
disparity layers (or stripes or columns); 
(iii) the presence of reciprocal excitation 
within each layer; and (iv) the presence 
of reciprocal inhibition between layers 
along the two lines of sight. Ideally, the 
inhibition should exhibit the character- 
istic "orthogonal" geometry of the thick 

Fig. 1 (left). Ambiguity in the correspondence between the two retinal 
projections. In this figure, each of the four points in one eye's view 
could match any of the four projections in the other eye's view. Of the 
16 possible matchings only four are correct (closed circles), while the 
remaining 12 are "false targets" (open circles). It is assumed here that 
the targets (closed squares) correspond to "matchable" descriptive 
elements obtained from the left and right images. Without further 
constraints based on global considerations, such ambiguities cannot 
be resolved. Redrawn from Julesz (11, figure 4.5-1). Fig. 2 (right). 
The explicit structure of the two rules R and R2 for the case of a one- 
dimensional image is represented in (a), which also shows the struc- 
ture of a network for implementing the algorithm described by Eq. 2. 
Solid lines represent "inhibitory" interactions, and dotted lines repre- 
sent "excitatory" ones. The local structure at each node of the 
network in (a) is given in (b). This algorithm may be extended to two- 
dimensional images, in which case each node in the corresponding 
network has the local structure shown in (c). Such a network was used 
to solve the stereograms exhibited in Figs. 3 to 6. 
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lines in Fig. 2, but slight deviations may 
be permissible (16). 

At the psychophysical level, several 
experiments (under stabilized image con- 
ditions) could provide critical evidence 
for or against the network: (i) results 

about the size of Panum's area and the Discussion 
number of disparity "layers"; (ii) results 
about "pulling" effects in stereopsis Our algorithm performs a computation 
(20); and (iii) results about the relation- that finds a correspondence function be- 
ship between disparity and the minimum tween two descriptions, subject to the 
fusable pattern size (Fig. 6). two constraints of uniqueness and conti- 
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nuity. More generally, if one has a situa- 
tion where allowable solutions are those 
that satisfy certain local constraints, a 

cooperative algorithm can often be con- 
structed so as to find the nearest allow- 
able state to an initial one. Provided that 
the constraints are local, use of a cooper- 
ative algorithm allows the representation 
of global order, to which the algorithm 
converges, to remain implicit in the net- 
work's structure. 

The interesting difference between this 
stereo algorithm and standard correla- 
tion techniques is that one is not required 
to specify minimum or maximum correla- 
tion areas to which the analysis is subse- 
quently restricted. Previous attempts at 

implementing automatic stereocompari- 
son through local correlation measure- 
ment have failed in part because no 

single neighborhood size is always cor- 
rect (12). The absence of a "character- 
istic scale" is one of the most interesting 
properties of this algorithm, and it is a 
central feature of several cooperative 
phenomena (22). We conjecture that the 
matching operation implemented by the 
algorithm represents in some sense a 
generalized form of correlation, subject 
to the a priori requirements imposed by 
the constraints. The idea can easily 
be generalized to different constraints 
and to other forms of equations 1 or 2, 

and it is technically quite appealing. 
Cooperative algorithms may have 

many useful applications [for example, 
to make best matches for associative 
retrieval problems (15)], but their rele- 
vance to early processing of information 

by the brain remains an open question 
(23). Although a range of early visual 
processing problems might yield to a co- 
operative approach ["filling-in" phenom- 
ena, subjective contours (24), grouping, 
figural reinforcement, texture "fields," 
and the correspondence problem for mo- 
tion], the first important and difficult task 
in problems of biological information 
processing is to formulate the underlying 
computation precisely (3). After that, 
one can study good algorithms for it. In 

any case, we believe that an experimen- 
tal answer to the question of whether 
depth perception is actually a coopera- 
tive process is a critical prerequisite to 
further attempts at analyzing other per- 
ceptual processes in terms of similar al- 
gorithms. 

Summary 

The extraction of stereo-disparity in- 
formation from two images depends up- 
on establishing a correspondence be- 
tween them. In this article we analyze 

Figs. 3 to 6. The results of applying the algorithm defined by Eq. 2 to two random-dot 
stereograms. Fig. 3. The initial state of the network C'O' is defined by the input such that a 
node takes the value 1 if it occurs at the intersection of a 1 in the left and right eyes (Fig. 2), and 
it has the value 0 otherwise. The network iterates on this initial state, and the parameters used 
here, as suggested by the combinatorial analysis, were 0 = 3.0, e = 2.0, and M = 5, where 0 is 
the threshold and M is the diameter of the "excitatory" neighborhood illustrated in Fig. 2c. The 
stereograms themselves are labeled Left and Right, the initial state of the network as 0, and the 
state after n iterations is marked as such. To understand how the figures represent states of the 
network, imagine looking at it from above. The different disparity layers in the network lie in 
parallel planes spread out horizontally, so that the viewer is looking down through them. In 
each plane, some nodes are on and some are off. Each of the seven layers in the network has 
been assigned a different gray level, so that a node that is switched on in the top layer 
(corresponding to a disparity of +3 pixels) contributes a dark point to the image, and one that is 
switched on in the lowest layer (disparity of -3) contributes a lighter point. Initially (iteration 0) 
the network is disorganized, but in the final state stable order has been achieved (iteration 14), 
and the inverted wedding-cake structure has been found. The density of this stereogram is 50 
percent. Fig. 4. The algorithm of Eq. 2, with parameter values given in the legend to Fig. 3, 
is capable of solving random-dot stereograms with densities from 50 percent to less than 10 
percent. For this and smaller densities, the algorithm converges increasingly slowly. If a simple 
homeostatic mechanism is allowed to control the threshold 0 as a function of the average 
activity (number of "on" cells) at each iteration [compare (15)], the algorithm can solve 
stereograms whose density is very low. In this example, the density is 5 percent and the central 
square has a disparity of +2 relative to the background. The algorithm "fills in" those areas 
where no dots are present, but it takes several more iterations to arrive near the solution than in 
cases where the density is 50 percent. When we look at a sparse stereogram, we perceive the 
shapes in it as cleaner than those found by the algorithm. This seems to be due to subjective 
contours that arise between dots that lie on shape boundaries. Fig. 5. The disparity 
boundaries found by the algorithm do not depend on their shapes. Examples are given of a 
circle, an octagon (notice how well the difference between them is preserved), and a triangle. 
The fourth example shows a square in which the correlation is 100 percent at the boundary but 
diminishes to 0 percent in the center. When one views this stereogram, the center appears to 
shimmer in a peculiar way. In the network, the center is unstable. Fig. 6. The width of the 
minimal resolvable area increases with disparity. In all four stereograms the pattern is the same 
and consists of five circles with diameters of 3, 5, 7, 9, and 13 dots. The disparity values 
exhibited here are +1, +2, +3, and +6, and for each pattern we show the state of the network 
after ten iterations. As far as the network is concerned, the last pair (disparity of +6) is 
uncorrelated, since only disparities from -3 to +3 are present in our implementation. After ten 
iterations, information about the lack of correlation is preserved in the two largest areas. 

the nature of the correspondence compu- 
tation and derive a cooperative algorithm 
that implements it. We show that this 

algorithm successfully extracts informa- 
tion from random-dot stereograms, and 
its implications for the psychophysics 
and neurophysiology of the visual sys- 
tem are briefly discussed. 
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