
we infer that sexual differences are not 
confined to cell size alone (Fig. 1). The 
density of cell packing and the amount of 
neuropil in RA and HVc also differ be- 
tween males and females (25). Males, 
with a greater commitment to vocal 
learning, also have more neuropil. The 
sexual dimorphism in vocal areas of 
these two songbird species may be re- 
lated to the fact that, whereas males of 
both species learn their song by refer- 
ence to auditory information, females do 
not normally sing. 
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nXIIts), which is composed of the motoneurons 
innervating the vocal organ (syrinx). In the ze- 
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sured. This was possible because in each of five 
males and females, the tracheosyringeal branch 
of the hypoglossus had been cut unilaterally 
(three male-female pairs on the left, two on the 
right) 7 to 9 days before the birds were killed. 
Under this procedure, the ipsilateral syringeal 
motoneurons of nXIIts become chromatolytic 
and swell and serve as a guideline for the limits 
of nXIIts on the nonchromatolytic side. Since 
the swelling also enlarges the volume of nXIIts, 
the values presented in Fig. 2 are derived from 
twice the volume of the nonchromatolytic side 
of nXIIts for each zebra finch. In both species 
the perimeter drawn around the motor nucleus 
circumscribed all of the motoneuron cell bodies 
but not the neuropil that surrounds the motor 
nucleus. 

17. The motor nucleus nXIIts innervates the syrinx 
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Fig. 1. Relationship of relaxation time to wa- 
ter content. The open symbols refer to origi- 
nal data as given by Beall et al. [figure 2B in 
(1)]. The closed symbols refer to the corrected 
relaxation time. Triangles (open and closed) 
denote Chinese hamster ovary cells; squares 
(open and closed) denote HeLa cells. 
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Thus it is the corrected value of T, Tcorr, 
as given by Eq. 3, that is linear in 
(a + b)/a x (note that a remains fixed 
as water is added, and a + b is the total 
weight of the water). 

To test this, values of Tobs were taken 
from figure 2B of (I); the corresponding 
corrected values were then calculated 
from Eq. 3 with T,, = 2500 msec. In Fig. 
1 we plot Tc,,rr versus x; also shown are 
the original data. It is our contention that 
the corrected graph supports the linear 
theory. 
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In our report (1), we did not consider it 
necessary to present a detailed analysis 
of T, as a function of cellular hydration 
as suggested by Brownstein and Tarr for 
three reasons. First, a plot of l/tl(obs) 
versus 1/x (where x is grams of H20 per 
gram of dry solids) did not prove to be 
linear over the entire range of hydration. 
Second, Raaphorst et al. have shown 
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that, as the concentration of water in 
CHO cells is decreased, the T, values for 
the water protons first decrease and then 
increase [see figure 3 of (2)]. Third, the 
relaxation times of water protons were 
shown to change independently of cellu- 
lar hydration during the HeLa cell cycle 
[see figure 2A of (1)]. 

The analysis of Brownstein and Tarr 
demonstrates a linear relationship be- 
tween their Tcorr and hydration over the 
range of 4 to 8 g of H20 per gram of dry 
solids. Above 8 g of H20 per gram of dry 
solids, there is a change in slope (see 
their figure). This is the exact observa- 
tion we made. Therefore, their comment 
does not add anything new. 
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Brain serotinin is known to have a 
very large 24-hour rhythm (2), com- 
parable to the range of variation noted by 
Asberg et al. Furthermore, there has 

been speculation that the phase of 24- 
hour rhythms may be altered in de- 
pressed patients. The bimodal distribu- 
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