
curs in the presence of visual targets. 
(ii) The appropriate behavior is pre- 
dominantly visual; about 70 percent con- 
sists of scanning. (iii) Although the in- 
fants were active, relatively little of their 
motor activity was directed toward the 
targets; of this only about half seemed to 
be coordinated with visual response to 
the target. (iv) There is virtually no evi- 
dence that the behavior toward grasp- 
able and nongraspable objects differs in 
any way. The observed rates of respond- 
ing in our first experiment were so low 
that differences for the two target condi- 
tions could scarcely have been detected. 
But in the second experiment higher fre- 
quencies of relevant behavior were ob- 
served, so that real differences should 
have been detectable. Only one of the six 
differences tested was statistically signifi- 
cant, and was small. 

Our findings are consonant with an 
earlier report on the development of visu- 
ally elicited reaching (7). We conclude 
that, although infants show definite inter- 
est when visual targets are displayed, 
they express their interest primarily 
through visual exploration; these experi- 
ments thus do not support the hypothesis 
of some form of advanced or higher-or- 
der processing of the properties of a dis- 
tal stimulus. In particular the experi- 
ments do not allow the interpretation 
that infants in the first 2 weeks of life 
readily differentiate visually presented 
objects from their representations. 
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Sexual Dimorphism in Vocal Control Areas 

of the Songbird Brain 
Abstract. In canaries and zebra finches, three vocal control areas in the brain are 

strikingly larger in males than in females. A fourth, area X of the lobus parolfac- 
torius, is well developed in males of both species, less well developed in female can- 
aries, and absent or not recognizable in female zebra finches. These size differences 
correlate well with differences in singing behavior. Males of both species learn song 
by reference to auditory information, andfemales do not normally sing. Exogenous 
testosterone induces singing in female canaries but not in female zebra finches. This 
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is believed to be the first report of such 
brain. 

In many species of animals, males and 
females exhibit different patterns of be- 
havior, especially in contexts related to 
courtship and reproduction (1). Recent 
evidence suggests that structural differ- 
ences in male and female central nervous 
systems may contribute to these differ- 
ences in behavior (2). We have discov- 
ered a striking sexual dimorphism in 
song control areas of the brain of the ca- 
nary (Serinus canarius) and the zebra 
finch (Poephila guttata), which can be re- 
lated to behavioral differences between 
the two sexes. 
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gross sexual dimorphism in a vertebrate 

Adult male canaries have a complex 
song repertoire learned by reference to 
auditory information (3, 4). Female ca- 
naries do not normally sing, although 
they will produce a song similar to that 
of the males when administered testos- 
terone (5, 6); the song, however, is con- 
siderably less varied than that of males 
(6). Female canaries also produce a 
variety of other calls (7), and, as in the 
case of other carduelines (8), some of 
these calls may be learned. 

Male zebra finches have a single song 
type, which, as in the canary, is devel- 
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Fig. 1. Frontal sections through the robust nucleus of the archistriatum (RA) in a male (A) and 
female canary (B) and a male (C) and female zebra finch (D). The canary photographs are from 
the left hemisphere, and those of zebra finch are from the right. For each of the four birds 
shown, the rostro-caudal level corresponds to the largest area of RA seen in this plane of 
section. The relatively unstained eyebrow-shaped structure is the lamina archistriatalis dorsalis, 
which separates the neostriatum (dorsal) from the archistriatum (ventral). The prominent 
ellipsoidal nucleus is RA. Cresyl violet-stained sections, 50 /m thick (x42). 
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Fig. 2. The volumes occupied by four neural regions associated with vocal behavior (area X, HVc, RA, and nXlI) and by two regions not 
associated with vocalization (Rt and SpM) in male and female canaries (A) and zebra finches (B). Each bar represents the mean of the total 
(right plus left) volumes of each area sampled (18,26), and the vertical line above the bar is the standard deviation of the individual values. The ratio 
of the male to the female mean is given for each region. 

oped by reference to auditory informa- 
tion (9). Female zebra finches do not sing 
even when testosterone propionate is im- 
planted when they are adults (10). The 
vocal repertoire of female zebra finches 
is otherwise small, consisting of contact 
and enticement notes produced in a vari- 
ety of circumstances (11). Because of 
this simplicity, the calls may develop nor- 
mally in the absence of auditory models. 

Five adult male canaries, five adult fe- 
male canaries, six adult male zebra finch- 
es, and seven adult female zebra finches 
(12) were anesthetized and then perfused 
with saline followed by 10 percent for- 
malin in physiological saline. The brains 
were removed, blocked, fixed, embed- 
ded, and sectioned; the sections were 
mounted on glass slides (13, 14). All 
brains were weighed before being embed- 
ded (15). Serial sections cut at 10 to 50 
,um were mounted, stained with cresyl vi- 
olet for cell bodies or silver stain (Fink- 
Schneider) (14) for unmyelinated nerve 
fibers, and viewed under the light micro- 
scope. The volume of certain brain struc- 
tures was measured as follows. A micro- 
projector (Bausch and Lomb) projected 
magnified (x53) images of cresyl violet- 
stained sections on drawing paper. A pe- 
rimeter was then drawn around the re- 
gions of interest, and the area enclosed 
was measured with a polar planimeter. 
These areas were then multiplied by the 
thickness of the sections, and the result- 
ing volume was corrected for the fre- 
quency of sampling (for example, multi- 
plied by 2 if every other section was 
measured). The sum of all such products 
for a given brain region was an estimate 
of its volume. 

We made drawings of four cyto- 
architectonically distinct brain structures: 
(i) area X of the lobus parolfacto- 
rius (LPO), (ii) the hyperstriatum ventrale, 
pars caudale (HVc), (iii) the robust nucle- 
us of the archistriatum (RA) (Fig. 1), and 
(iv) the hypoglossal nucleus of the me- 
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dulla (nXII) (16). Nottebohm et al. (4) 
have described these structures in the 
canary and presented anatomical and be- 
havioral evidence that they are part of 
the vocal control system of the canary 
brain. The brain of the male zebra finch 
includes areas that are similar to these 
four regions in position and cy- 
toarchitecture; we thus presume that 
they have a similar role in vocalization 
(17, 18). We also drew and estimated the 
volume of two thalamic brain structures 
not related to vocal control, the nucleus 
rotundus (Rt) and the nucleus spiriformis 
medialis (SpM), which were chosen be- 
cause of their discrete boundaries (19). 

In both the canary and the zebra finch, 
the four vocal control areas are markedly 
larger in males than in females (P < .02, 
two-tailed t-test) (Figs. 1 and 2). These 
differences are highly significant. That 
there were no such differences in the vol- 
ume estimates of the two structures not 
related to vocal control or in total brain 
weight (P > .2) (15) suggests that the dif- 
ferences are specific to song areas and re- 
lated to a sexual difference in vocal be- 
havior. This conclusion is also supported 
by the observation that the sexual differ- 
ences in volume are more marked in ze- 
bra finches than in canaries, as would be 
expected from the total absence of song 
in female zebra finches. 

In zebra finches, we detected no differ- 
ences between the right and left sides of 
any of the four vocal and two nonvocal 
areas. Similarly, there was no systematic 
difference between the volumes of the 
right and left area X, HVc, RA, Rt, and 
SpM in canaries. This result is intriguing 
in light of the marked left hemispheric 
dominance for vocal control described 
for this species (4, 20). There was signifi- 
cant difference between the volumes of 
the right and the left hypoglossal nuclei of 
canaries (21). The larger size of the left 
side in all ten male and female canaries 
may be related to the left hypoglossal 

dominance for song control in this spe- 
cies (22). 

The size ratio of male to female canary 
brain areas increases as one goes from 
the hypoglossal nucleus to RA, HVc, 
and area X, that is, as one goes to struc- 
tures further removed from the motoneu- 
rons innervating the syringeal mus- 
culature (23). This graded series of ratios 
suggests that the "higher" (that is, fur- 
ther removed) neural regions in this sys- 
tem are involved in some aspect of vocal 
performance in males that is specifically 
absent or underrepresented in females. It 
may be that the higher centers are re- 
sponsible for a disproportionately large 
share of the neural operations controlling 
vocal learning and size of vocal reper- 
toire; therefore, in females, who normal- 
ly do not sing, these areas should be less 
well represented. The zebra finch brain 
departs from this pattern in that the vol- 
ume ratio of male to female brains is 
somewhat smaller in HVc than in RA 
(Fig. 2), and area X is not recognizable in 
the female. 

In both male and female canaries, area 
X contains larger cell clusters than the sur- 
rounding LPO; perhaps as a result, cresyl 
violet stains area X darker than the sur- 
rounding tissue (4). In Fink-Schneider stains 
of unmyelinated fibers, area X is discrimi- 
nable from the rest of LPO because it 
contains a rich mesh of fibers, some of 
which are projections from HVc (24). 
Area X in male zebra finches is similar in 
these respects [see also (19)]. However, 
in the corresponding area of the female 
zebra finch brain area X is not recogniz- 
able, which suggests that it is grossly 
modified or absent. We have assumed it 
to be absent (Fig. 2). It is not clear how 
the disproportionately large size of area 
X in the male zebra finch compared with 
that of the canary might relate to differ- 
ences in behavior. 

From the extent of the sexual differ- 
ences in the volumes of the vocal areas, 
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we infer that sexual differences are not 
confined to cell size alone (Fig. 1). The 
density of cell packing and the amount of 
neuropil in RA and HVc also differ be- 
tween males and females (25). Males, 
with a greater commitment to vocal 
learning, also have more neuropil. The 
sexual dimorphism in vocal areas of 
these two songbird species may be re- 
lated to the fact that, whereas males of 
both species learn their song by refer- 
ence to auditory information, females do 
not normally sing. 

FERNANDO NOTTEBOHM 

ARTHUR P. ARNOLD* 
Field Research Center, 
Rockefeller University, 
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denote Chinese hamster ovary cells; squares 
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