
from treated animals. No parasites or 
parasite debris were seen 24 hours after 
treatment. 

Mice that were infected with T. b. 
rhodesiense and that showed both the 
LS forms and SS forms of the parasite in 
the blood were also injected with SHAM 
and glycerol. One hour after treatment 
only a monomorphic SS form was present 
in the blood, and after 24 hours no para- 
sites were observed. 

Six days after the treatment of rats and 
mice infected with T. b. brucei, the para- 
sites reappeared in the blood and the ani- 
mals died within a few days. Without 
treatment, the animals would have died 
within a few hours. Mice infected with T. 
b. rhodesiense also showed a recurrence 
of parasitemia after treatment. We have 
found no regimen of treatment that pre- 
vents the recurrence of parasitemia, al- 
though the response of the parasite popu- 
lation to successive treatments remains 
the same and the parasites do not appear 
to become resistant to the treatment. 
Two possible explanations for the recur- 
rence are (i) the entire population of para- 
sites contains a few resistant cells with a 
partial TCA cycle, and (ii) the effective 
trypanocidal levels of SHAM and glycer- 
ol are not reached in some tissues and 
parasites in those tissues survive. The 
second hypothesis seems more probable, 
because temporal separation of SHAM 
and glycerol administration by 5 minutes 
abolishes their therapeutic value, sug- 
gesting that they are cleared very rapidly 
from the blood. By finding a substitute 
for glycerol or a different method of ad- 
ministration, it might be possible to main- 
tain therapeutic levels of the drugs long 
enough for all infected tissues to be 
reached. Similarly, / other hydroxamic 
acids or iron chelators might be more ef- 
fective in blocking the activity of glycero- 
phosphate oxidase. 

The results presented here promise a 
rational approach to trypanosome 
chemotherapy based on knowledge of 
the peculiar carbohydrate catabolic path- 
ways of these parasites. 
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A valuable paradigm for the effects of 
experience on brain function is the 
change in binocularity of kitten visual 
cortical neurons which occurs after eye 
occlusion. Monocular visual experience 
results in increased numbers of neurons 
which respond exclusively to the pre- 
viously open eye, with a loss of the nor- 
mal, binocularly activated neurons. 
These changes in ocular dominance are 
virtually permanent (1), occur rapidly 
(2), and are confined to a well-defined 
postnatal period of susceptibility or "crit- 
ical period" (3). A key question con- 
cerns the factors which determine the be- 
ginning and end of this period of neural 
plasticity. 

In this report we present a preliminary 
test of the hypothesis that the cate- 
cholamine neurohormones are required 
for the maintenance of visual cortical 
plasticity during the critical period. Our 
research was stimulated both by the hy- 
potheses of Kety (4) and Crow and co- 
workers (5) that the brainstem mono- 
amine pathways are involved in the fore- 
brain's plasticity, and by recent work 
linking the monoamines with brainstem 
pathways which have powerful effects 
on the visual pathway (6), and which ap- 
pear to mature during the critical period 
(7). To examine the role of cate- 
cholamines we used 6-hydroxydopamine 
(6-OHDA), a specific neurotoxin that is 
taken up from the cerebrospinal fluid by 
axon terminals which contain norepi- 
nephrine or dopamine and results in their 
destruction (8). Electrophysiological re- 
cording supports the hypothesis to the 
extent that the usual changes in binocu- 
larity of cortical neurons do not follow 
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monocular occlusion in kittens whose 
cortices have been depleted of cate- 
cholamines by 6-OHDA. 

Four pairs and one trio of littermates 
were obtained from our quarantined cat 
colony, a partially inbred line of tabby 
cats. Each pair included a control and an 
experimental kitten, and the trio (JT4, 
JT2, and TJ12; see Table 1) included two 
different kinds of controls as well as an 
experimental animal. Each of the 11 kit- 
tens had a fine stainless steel cannula 
with trocar implanted in the right lateral 
ventricle under ketamine anesthesia (30 
to 40 mg/kg) during the fourth to seventh 
week after birth. The right eyelid of all kit- 
tens was sutured under Fluothane anesthe- 
sia (for rapid recovery) during the same 
period, some time after ventricular can- 
nulation (Table 1). Each procedure was 
timed to coincide as closely as possible 
for both members of an experimental- 
control pair (Table 1). 

Using the permanently implanted can- 
nula as a guide, we injected into the ven- 
tricle a dose of 6-OHDA plus vehicle (16 
,tg of 6-OHDA per microliter of 0.05 to 
0.1 percent ascorbic acid in Ringer solu- 
tion), or the vehicle solution alone (9). 
Our choice of dose was guided by pre- 
vious studies on neonatal rats and adult 
cats (10) and by close observation of the 
behavioral effects following injection 
(11). Because we do not have reliable 
data on the lower limits of catecholamine 
levels achieved by our treatment (12), 
and because some evidence indicates 
that the nerve terminals recover rapidly 
after cessation of treatment (13), we gave 
repeated large injections for more than 1 
week. For example, 200 ,tg of 6-OHDA 
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Depletion of Brain Catecholamines: Failure of Ocular 
Dominance Shift After Monocular Occlusion in Kittens 

Abstract. Monocularly deprived kittens were compared with littermates that had 
had their eyelids suturedfor the same time but that had, in addition, been treated 
with 6-hydroxydopamine to deplete their forebrains of catecholamines. The visual 
cortices of all the catecholamine-depleted kittens showed high proportions of binocu- 
lar neurons, in contrast to the control group, most of whose visual cortical neurons 
were driven exclusively by the nondeprived eye. Catecholamines may play an impor- 
tant role in the maintenance of cortical plasticity during the critical period. 
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was injected on day 1 and the dose was 
doubled each day thereafter until the 
daily dose reached 1.6 mg on day 4. 
The daily dose was then kept at or be- 
low this level until a total dose of about 
10 mg had been administered (Table 1 
and Fig. 1G). With these doses there 
were clear behavioral effects in the ex- 
perimental group, including a rage reac- 
tion to slight provocation, pupillary con- 
striction, compulsive turning to the left 
(11), and, on rare occasions, gross seiz- 
ures (14, 15). The experimental group 
was sometimes handfed with milk to 
maintain a normal curve for the increase 
in body weight. In one of the control ani- 
mals (JT2 in Table 1) we injected 5,7-di- 
hydroxytryptamine (5,7-DHT) which has 
a small effect on catecholamine-con- 
taining terminals but destroys those con- 
taining the indoleamine transmitter, se- 
rotonin (16). 

One to two weeks after eye occlusion, 
the kittens were prepared for single unit 
recording with standard techniques (17). 
Preparation was routine except that 
when the anesthetic was first adminis- 
tered we noticed that the experimental 
group was more sensitive to anesthesia 
and could be adequately maintained on 
0.5 percent Fluothane or less (as opposed 
to 1 to 1.5 percent Fluothane required for 
the controls). Single neurons were re- 
corded extracellularly with Levick's 
tungsten-in-glass microelectrodes (18) 
which were driven down the medial bank 
of the left postlateral gyrus. Recording 
sessions lasted about 20 hours. Each neu- 
ron was assigned to an ocular dominance 

group from one to seven based on the cri- 
teria of Hubel and Wiesel (19) (see Fig. 
1, E and F). Electrolytic lesions were 
made for later reconstruction of the elec- 
trode tracks from frozen lesions stained 
with cresyl violet (Fig. 1, C and D). 

The principal finding was that closure 
of the right eye failed to modify the bin- 
ocularity of cortical neurons in each ex- 
perimental kitten. All of the 6-OHDA- 
treated animals had significant numbers 
of binocularly activated neurons and 
none showed the strong bias toward neu- 
rons driven exclusively by the left eye 
which was apparent for each member of 
the control group. This is shown in Table 
1, where experimental details and ocular 
dominance data are given for all 11 kit- 
tens, and Fig. 1, where we have picked 
out a particular experimental (TJ9)-con- 
trol (TJ11) pair to show the result in de- 
tail. Some variation in the degree of pres- 
ervation of binocularity can be traced to 
differences in the dose of 6-OHDA and 
the time of the first injection with respect 
to that of eye occlusion. For example, 
the neurons of TJ3 show a slight bias to- 
ward the left eye which may reflect the 
fact that eye occlusion was started with 
the first injection and the kitten may 
therefore have had 1 or 2 days of monoc- 
ular experience before the 6-OHDA was 
exerting its full effect. Similarly, both kit- 
tens (TJ3 and TJ12) receiving lower 
doses of 6-OHDA show a slight left eye 
bias. In addition to the marked differ- 
ences in ocular dominance distributions 
shown in Fig 1, E and F, we also ob- 
served differences (not shown) between 

the two preparations in the selectiv- 
ity of neurons for the orientation of 
the stimulus. Kitten TJ9 tended to have 
larger numbers of the nonselective neu- 
rons characteristic of young or visually 
inexperienced kittens (20). We believe 
that the nonselective and nonresponsive 
cells may in fact be further evidence that 
catecholamine depletion prevents visual 
experience from exerting its usual effect 
on cortical development because the 
numbers of such neurons normally de- 
crease as a result of visual experience 
(20). Moreover, treatment of a normal 
adult with 6-OHDA did not result in the 
appearance of nonresponsive or non- 
selective neurons (21). 

We think it most likely that the striking 
effect we have observed is a product of 
catecholamine depletion rather than 
some nonspecific effect of 6-OHDA. The 
occurrence of seizures in some animals 
could be of concern in this regard, but a 
role for this side effect appears to be 
ruled out by two observations. First, all 
of the experimental animals, except for 
TJ9, failed to show seizures and yet 
remained binocular after eye occlu- 
sion. Second, the indoleamine-depleting 
agent, 5,7-DHT, can produce seizures, 
yet was associated with perhaps the 
greatest shift in ocular dominance after 
eye occlusion (JT2; Table 1). This differ- 
ential effect of 6-OHDA versus 5,7-DHT 
further supports the thesis that the fail- 
ure of cortical modification is attribut- 
able specifically to catecholamine deple- 
tion, because the two neurotoxins ap- 
pear to have similar modes of action and 

Table 1. Summary of data for the 11 kittens grouped as four pairs and one trio. Numbers under the entry of ocular dominance refer to cells in one 
of three categories, that is, binocular, groups 2 to 6 of Hubel and Wiesel's classification (19); left eye, group 7; and right eye, group 1. The total 
number of cells recorded was 156 in the controls and 175 in the experimental kittens. The columns for day of injection indicate the first day and 
the last day after birth on which injections were given; the column for days of occlusion indicate the days after birth during which the right eye 
was occluded. 

Body weight (g) 6-OHDA Ocular dominance 

Cat, sex At At Total Days of injection Days of 
first record- dose occlusion Binocular Le 

injection ing (mg) First Last eye 

TJ1* F 800 945 47 to 61 8 27 6 
TJ2 M 730 550 8.7 47 55 47 to 58 38 8 2 
TJ4 M 240 260 32 to 40 4 15 1 
TJ3 M 300 290 5.0 32 38 32 to 39 16 16 5 
TJSt M 365 250 2.2 35 38 39 to 48 1 5 0 
TJ6 F 325 295 13.4 35 47 39 to 47 16 3 6 
TJ11* M 425 570 39 to 47 7 23 0 
TJ9 M 490 515 12.4 33 44 39 to 46 23 3 3 
JT4* F 380 660 35 to 44 13 14 0 
JT2 M 405 580 (3.5) (28) (35) 35 to 43 2 30 0 
TJ12 M 415 580 7.0 28 35 35 to 42 24 11 1 
Total control 35 114 7 
Total experimental 117 41 17 

*TJ1, TJll, and JT4 were recovered and reverse-sutured (15). tThe small sample size in TJ5 was due to the accidental loss of this kitten during the recording session. tJT2 was treated with 5,7-DHT in place of 6-OHDA. In this kitten, the behavioral changes were distinct from those characteristic of 6-OHDA-treated 
kittens except for a trend toward seizures (of the grand mal type) at high doses of 5,7-DHT. For example, kittens treated with 5,7-DHT had dilated pupils (as opposed to constriction of the pupils in the 6-OHDA-treated group) and tended to seek a hiding place after injection in contrast to the compulsive turning shown by the 6-OHDA- 
treated group. 
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Fig. 1. Diagrams of binocularity of visual cortical cells in a pair of kittens (TJ9 that was tr 
with 6-OHDA and TJ11 that was a control) showing the failure of ocular dominance shift 
eye occlusion in the kitten treated with 6-OHDA. (A and B) The location of individual cells 
the cortical surface was plotted successively on the ordinate (in millimeters). The binocular 
each cell was scored semiquantitatively as one of seven groups according to Hubel and A 
(19) (abscissas). Briefly, the group 1 cell can be excited only through the contralateral eye 
group 7 cell can be excited only through the ipsilateral eye. The group 4 cell is influe 
equally by both eyes. The group U (unresponsive) to the right of group 7 designates vis 

unresponsive cells encountered in the same electrode track. After monocular occlusiom 
majority of cells in TJ11 responded, as expected, exclusively to ipsilateral eye stimul 

(group 7), whereas only 3 of 29 visually responsive cells (closed circles) in TJ9 were fou 
group 7. Open circles are for visually unresponsive cells. The incidence of binocular cells i, 
higher in TJ9 than in TJ11. These differences are not attributable to sampling bias, as shov 
the electrode tracks (see D and C, respectively). Although there was a certain difference i 
sampling efficiency between TJ9 (180 ,um per cell, electrode track 7 mm in length) and TJ1 
,tm per cell, electrode track 5 mm in length) both electrode tracks were in the projection a 
the central gaze and (see diagrams in C and D) both tracks had chances to cross c 
dominance columns several times except for the white matter (indicated by brackets in / 
B). The high proportion of visually unresponsive cells and lower sampling efficiency in ' 
opposed to TJ11 was not observed in other experimental kittens. Recording sites with at 
one neuron (and sometimes two or three) were separated by a mean of 114 /zm for four cc 
kittens. The numbers of unresponsive neurons for the other experimental kittens TJ2, 
TJ6, and TJ12 were, respectively, 3, 1, 2, and 2. Lines indicate recording sequence. (C a] 
Drawings of two frontal sections containing the lesions at the end of track. The orientati 
penetration was angled 5? medially and anteriorly from the vertical. (E and F) Ocular domil 
histograms for TJ9 and TJ11, respectively. The difference in experimental and control anirr 
apparent. (G) The curve of the cumulative dose (solid line) of 6-OHDA administered 
ventricularly into TJ9 plotted against the age of the animal. The daily dose of 6-OHDA fo 
started with 200 Acg, and was doubled every day until it reached some upper limit deterr 
empirically (1.6 mg) on day 4 after the start of drug injection. The total dose for 2 week 
12.4 mg. Kitten TJ11 (control) received the same volume of the vehicle only (dashed line) 
timing and duration of monocular eye closure (right) was indicated by open squares < 
bottom. The cortical recording was made on postnatal day 46 for TJ9 (open arrow) and d 
for TJ 11 (solid arrow). 
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ular- which began after the injections of 6- 
TJ12 OHDA had ceased and therefore after 
f (67 the behavioral side effects had dis- 
ision appeared. 

In conclusion, we think that the cate- 
cholamine neurohormones may play a 
major role in the maintenance of cortical 

- plasticity. We do not know which of the 
two catecholamines, dopamine or norepi- 
nephrine, is more important for this ef- 

- 1 fect, nor whether it is possible to en- 
hance plasticity outside of the "critical 
period" by appropriate treatment. 
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behavior which might alter the amount of visual 
experience obtained by the experimental kit- 
tens. In other words there were no indications 
that 6-OHDA-treated kittens suffered from a 
decreased visual input. 

12. Nissl-stained slides did not show any gross 
changes in the visual cortex of 6-OHDA-treated 
kittens. 
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observed them after high doses of 6-OHDA in 
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tation. 

Recent advances in the study of per- 
ception of very young infants have re- 
vealed abilities undreamed of 10 years 
ago (1). It has been claimed, with some 
justification, that the more sophisticated 
the methods of investigation have be- 
come, the more the infant's perceptual 
capacities have apparently grown (2). 
The study of infant perception is not a 
new phenomenon, but earlier evidence 
on perceptual development (3) generally 
supported the view that the initial stages 
of perceptual activity are diffuse and 

poorly articulated, and that intersensory 

Table 1. Comparison of Bower's results (4) 
with those of experiment 1. Infants 7 to 23 
days old were exposed for 4 minutes each to 
either an object (O) or its two-dimensional rep- 
resentation (picture) (P). Entries are the mean 
number of responses per infant in each obser- 
vation period for each target. 

Experi- Contacts Reaches 

ment 0 P O P 

Bower 12.0 0.0 53.0 0.5 
This 

report 0.46 0.39 2.2 1.9 
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CO2; 75: 27.5: 2.5 by volume, respectively) 
and immobilized (Flaxedil, 5 mg/hour). A small 
amount of dexamethasone (0.5 mg/hour) was 
added to the infusion solution. Body temper- 
ature and the rate of heartbeats were monitored 
continuously. The cornea was covered by con- 
tact lenses of zero power. The background illu- 
mination was kept at the photopic level and the 
brightness of visual stimuli was at about 1 to 2 
log units above it. The pupil was dilated by 
topical application of Cyclogyl (1 percent). Visu- 
al stimuli were presented on a tangent screen at 
57 cm from the animal's eye by a specially 
designed rear projection system. A joystick con- 
trolled the movement of images in the X and Y 
axes as well as their rotation. 

18. W. R. Levick, Med. Electron. Biol. Eng. 10, 510 
(1972). 

19. D. H. Hubel and T. N. Wiesel, J. Physiol. 
(London) 160, 106 (1962). 

20. J. D. Pettigrew, ibid. 237, 49 (1974); C. Blake- 
more and R. C. Van Sluyters, ibid. 248, 663 
(1975). 

21. We have also tested the effects of short- and 
long-term administration of 6-OHDA on the vi- 
sual response properties of neurons in normal 
kittens and adults (15). 6-OHDA had little effect 
on the few neurons we studied both before and 
after injection. Long-term administration in nor- 
mal visually experienced animals (in contrast to 
very young kittens) has little effect on binocular- 
ity and appears to have subtle effects which 
include a general increase in the sharpness of 
orientation tuning. This latter effect is difficult to 
understand but it at least supports our inter- 
pretation that the direct effects of 6-OHDA on 
neuron response properties play a minor role in 
comparison to its effects in reducing the sensitiv- 
ity of the cortex to monocular deprivation. 
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coordination, particularly between vi- 
sion and touch, develops slowly over 
time. 

Bower (4) has pointed out that demon- 
strating an infant's ability to make visual 
discriminations does not necessarily tell 
us anything about its apprehension of the 
nature of the distal (physical) stimulus, 
for example, whether it is a real object. 
He argues that investigating an ecologi- 
cally valid response-one that has utility 
for the organism, such as grasping at 
small objects presented visually and not 
too far from the body-would give more 
information about the infant's actual per- 
ceptual world. He reported that infants 
less than 2 weeks old do differentiate 
with an appropriate gesture between 
graspable and nongraspable objects pre- 
sented visually (4). This finding is so rev- 
olutionary and goes against such a well- 
established tradition in perceptual psy- 
chology that it should be validated. We 
therefore planned to replicate Bower's 
experiment and then to investigate the 
conditions under which visually guided 
reaching develops with respect to speed 
and precision. 
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reaching develops with respect to speed 
and precision. 
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