
low-order sensory interneurons, all areas 
of arthropod neuropil are probably com- 
prised entirely of identifiable neurons 
and clusters. 

A nervous system with 102 neurons, 
such as that of a nematode (17), can be 
constituted entirely of identified neurons 
and clusters. My data support the notion 
that a nervous system with 105 central 
neurons, such as that of a locust, could 
also be so constituted. While studies of 
identified neurons and clusters in in- 
vertebrate nervous systems have pro- 
gressed from giant interneurons to large 
interneurons and motoneurons (and now 
to small interneurons), our knowledge of 
identified neurons and clusters in verte- 
brate nervous systems is based solely on 
a few studies of giant interneurons (3). 
Although it is not possible to predict 
where most vertebrate neurons will oc- 
cur along the spectrum of equivalence, 
as we investigate the central nervous sys- 
tems of vertebrates with finer anatomical 
and physiological techniques, we will 
probably find less equivalence and a 
greater tendency toward uniqueness. 
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The response characteristics of single 
cells in the cat visual cortex can be pro- 
foundly modified by rearing animals in 

special visual environments (1, 2). Since, 
in everyday life, visual stimuli are in con- 
stant motion on the retinae, interest has 
been focused on the consequences of re- 
stricted experience with visual move- 
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Deprived Strobe-reared Normal 
(N = 122) (N = 251) (N = 570) 

Fig. 1. Percentages of units displaying orienta- 
tion selectivity, direction selectivity, or nei- 
ther property in cats reared in the dark, 
strobe-reared, and reared normally. For each 
group, N represents the total number of units 
studied in the various groups of cats. Data for 
normal and deprived cats were derived from 
Cynader, Berman, and Hein (5). 
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ment for cortical development. Rearing 
animals in stroboscopic illumination 
(strobe rearing), which deprives them of 
experience with movement but allows 
them patterned visual input, results in re- 
duced orientation and direction selectiv- 
ity among cortical neurons (3). The low- 
frequency stroboscopic environment 
used in previous experiments (one flash 
every 2 seconds) can be made progres- 
sively more like the normal environ- 
ment by increasing the frequency of 
the flashes. As the frequency was in- 
creased, we were able to examine the 
emergence of characteristic cortical 
properties. We now report that strobe 
rearing at an intermediate frequency 
(eight flashes per second) results in a cor- 
tex containing neurons with orientation 
selectivity but rarely with direction selec- 
tivity. 

Five kittens served as subjects in these 
experiments. They were raised from 
birth in a lighttight enclosure in which 
the only illumination source was a strobe 
light flashing eight times per second. The 
10-/sec flash duration ensured a series of 
stationary retinal images. The human 
subjective experience is that of a series 
of jerky images, reminiscent of the early 
motion pictures. After 4 to 6 months, we 
studied the visual responses of single 
neurons in the striate cortex according to 
methods and criteria that have been de- 
scribed elsewhere (4, 5). Responses in 
strobe-reared kittens were compared 
with responses of kittens reared in the 
dark and those of normal cats. We clas- 
sified units as orientation selective if 
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Abolition of Direction Selectivity in the Visual Cortex of the Cat 

Abstract. Cats were reared in a stroboscopically illuminated environment, which 
deprived them of experience with visual movement buLt allowed them form vision. In 
these cats, nelurons of the visttal cortex displayed normal orientation selectivity, buit 
direction selectivity was virtually abolished. The effect remained tunaltered by long 
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they responded well to flashing or mov- 
ing slits of a given orientation and poorly 
to other orientations. Orientation-selec- 
tive neurons were classified as direction 
selective if thin slits moving in the pre- 
sumptive preferred direction evoked at 
least twice as many spikes per pre- 
sentation as slits moving in the non- 
preferred direction. In initial experi- 
ments, we assessed direction selectivity 
simply by listening to unit responses 
over a loudspeaker, but in later experi- 
ments an averaging computer was used. 

Orientation selectivity was a common 
feature in both normally reared cats and 
those reared in the stroboscopic light, al- 
though it was rarely found in those 
reared in the dark (Fig. 1). The breadth 
of orientation tuning for individual units 
was comparable in the strobe-reared and 
normal groups. By contrast, the occur- 
rence of cells with direction selectivity 
was much rarer in the strobe-reared 
group than in normal cats and did not dif- 
fer significantly from the proportion 
found in cats reared in the dark. The re- 
duction of direction selectivity for the 
strobe-reared group was observed 
among both the simple and complex 
classes of cortical neurons. We also com- 
pared responses to visual stimuli moving 
at different velocities in cortical neurons 
of strobe-reared and normal cats. No dif- 
ferences either in preferred stimulus 
velocities or in breadth of velocity tuning 
were observed; slowly moving visual 
stimuli were most effective in activating 
striate cortex neurons in both groups of 
cats. 

We were concerned about the per- 
manence of the changes in cortical orga- 
nization brought about by the restricted 
environment. In most situations, altera- 
tions caused by early deprivation are 
largely irreversible, once the "critical pe- 
riod" has passed (2, 6). Because a num- 
ber of exceptions have been reported (5, 
7), however, we assessed the con- 
sequences of a recovery period in a nor- 
mally lit animal colony room. We record- 
ed repeatedly from the same animal at 
varying intervals after allowing it normal 
exposure. There was little additional di- 
rection selectivity after 6 months in the 
normal environment (Fig. 2). Thus, the 
deprivation effects were largely irrevers- 
ible, although further experiments would 
be required to establish whether any 
small residual plasticity remains. 

Three main conclusions may be 
drawn. (i) It seems necessary to expose 
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Fig. 2. Percentage of direction-selective units 
encountered in successive recording sessions 
from the visual cortex of strobe-reared cats as 
a fuinction of time after introduction to the 
normal environment. The numbers in paren- 
theses represent the number of direction-se- 
lective units over the total units for that re- 
cording session. The T = 0 point includes 
data collected from all five cats. In normal 
cats, 83 percent of the neurons found are 
direction-selective. 

prive a major facet of cortical selectivity 
while leaving intact other properties, 
such as orientation selectivity and veloci- 
ty specificity, implies that these proper- 
ties of cortical cells are determined by 
largely independent mechanisms. (iii) 
The deprivation effects cannot be re- 
versed by normal visual exposure if the 
initial deprivation is maintained for the 
first few months of life. The preparation 
described above may prove a useful tool 
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In recent years there has emerged a 
growing body of evidence that birds 
might detect, and their behavior be al- 
tered by, changes in the earth's magnetic 
field. These range from cases where er- 
rors or disruptions of orientation are cor- 
related with magnetic storm activity (1), 
through experiments where homing abili- 
ties of pigeons and gulls are altered when 
miniature Helmholtz coils or disk or bar 
magnets are attached to their bodies (2), 
to cases where nocturnal migratory ori- 
entation of caged songbirds shifts pre- 
dictably when the direction of the sur- 
rounding magnetic field is altered (3, 4). 
Experiments with migratory birds are of 
especial theoretical importance since, by 
predictably altering the birds' orienta- 
tions, they stand practically alone in 
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for behavioral and structural studies by 
providing a system in which a specific 
part of the cortical circuit has been al- 
tered. 
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demonstrating that magnetic information 
not only can disrupt normal orientation, 
but also can be used actively in the final- 
ization of the appropriate direction. 

The principal studies of migratory ori- 
entation in artificial magnetic fields come 
from the laboratories of Merkel and Wilt- 
schko at the University of Frankfurt 
am Main (Germany). They have reported 
that European robins (Erithacus rubicula) 
and three species of European warbler 
(genus Sylvia) will orient their spon- 
taneous nocturnal migratory activity (zu- 
gunruhe) in a seasonally appropriate di- 
rection when deprived of all meaningful 
visual cues but in the presence of normal 
geomagnetic information (3). Further, 
when the magnetic field is altered by 
means of Helmholtz coils, the directions 
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Magnetic Direction Finding: Evidence 

for Its Use in Migratory Indigo Buntings 

Abstract. The orientational capabilities of caged migratory indigo buntings were 
studied under differing magnetic field conditions. When tested in a situation allowing 
minimal exposure to visual cues but in the presence of the normal geomagnetic field, 
the birds demonstrated a significant orientation in the appropriate migratory direc- 
tion (to the north). When the horizontal component of the magnetic field was deflect- 
ed clockwise 120? by activation of Helmholtz coils surrounding the cage, the orienta- 
tion of the buntings shifted accordingly (clockwise to geographic east-southeast). 
These results suggest that indigo buntings are not only able to detect the geomagnetic 

field, but also can use this information in the finalization of their migratory direction. 
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