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to seizures. 

Riley has reported that C3H/He mice 
that had been routinely handled devel- 
oped mammary tumors earlier than mice 
reared under conditions designed to mini- 
mize what he called "environmental 
stress factors" (1). He interpreted his ob- 
servations and those of others as show- 
ing that stress is associated with "subtle 
modulating factors" in the environment 
and described the effects of such stress. 

We now report that inducing even tran- 
sient mild stress in the pregnant mouse 
increased the frequency of audiogenic 
seizures among the progeny. The experi- 
ments were originally designed to clarify 
an ambiguous result on seizure fre- 
quency after prenatal treatment with the 
phenylalanine analog 3-2-DL-thienylala- 
nine (2). In those experiments, the fre- 
quency of audiogenic seizures induced 
23 days after birth following a priming 
sound stimulus at 21 days (3), while high- 
est among animals treated with thienyl- 
alanine, was not significantly higher in 
that group than in the control mice 
treated with solvent. Both groups of 
mice showed seizure frequencies signifi- 
cantly higher than those of unhandled 
controls. 

Our investigation was a repetition of 
the earlier study with minor variations in 
methodology and with the addition of a 
group of sham-treated subjects. The 
mice were the 23rd and 24th generation 
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of a cross of C57BL/Gr, CBA/Gr, C3H/ 
C-Hw, and A/Gr strains maintained by 
maximum outbreeding, and were desig- 
nated as CBHA-C (4). A subgroup was 
subjected to brother-by-sister mating in 
generation 23. The sexes were housed 
separately, four or five females in a cage 
adjacent to a cage containing a single 
male. Females were placed with the male 
in late afternoon or early evening; they 
were checked for a vaginal plug as evi- 
dence of mating and removed to their 
own pens the following morning. The 
date the plug was found was considered 
day 0 of pregnancy. Mated females were 
assigned to one of four treatment groups. 
Treatments were randomized over males 
and cages. Mice were isolated during the 
17th or 18th day of gestation. Litters 
were reduced where necessary to seven 
pups to minimize the influences of varia- 
tion in litter size and of crowding (5). All 
mice had free access to food and water 
and were housed in the same room with 
18 hours of light in 24 hours (LD 18: 6). 
Treatments and sound stimuli were pre- 
sented between 11 a.m. and 1 p.m. 

Treatments consisted of intraperito- 
neal injection, on days 10, 11, and 12 
of gestation, of either (i) 50 mg of 8-2- 
DL-thienylalanine in 1 ml of O.5N NaOH, 
0.5N HC1, and 0.9 percent NaC1 (1: 1: 
5), (ii) solvent alone, or (iii) a sham treat- 
ment, in which a needle was inserted into 
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Susceptibility of Mice to Audiogenic Seizures 
Is Increased by Handling Their Dams During Gestation 

Abstract. Fetal mice treated on days 10, 11, and 12 of gestation by injecting the 
mothers with (i) 50 milligrams of /f-2-thienylalanine, (ii) solvent, or (iii) sham injection 
had identicalfrequencies of audiogenic seizures when tested 23 days after birth; these 
frequencies were significantly higher than those of an unhandled control group. Re- 
sults of the sham treatment suggest that maternal stress induced by handling, rather 
than the nature of the substance injected, increased the susceptibility of the offspring 
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Table 1. Responses of CBHA-C mice to sound stress 23 days after birth following a primary sound stimulus 21 days after birth. Entries are percen- 
tages + standard error of the means. A clonic seizure is mild or incomplete, and a tonic seizure is severe or one in which the animal becomes cata- 
leptic following a series of convulsive movements. Frequencies are calculated as the number in the class divided by N, times 100. Frequencies are 
not substantially different if calculated as mean litter percentages. Chi-square of homogeneity results, with no response, wild running, clonic 
seizure, and tonic seizure incidence as columns, and varying combinations of thienylalanine-treated (Th), solvent-treated (So), sham-treated (Sh), 
and unhandled (Un) groups as rows, were as follows. Overall: X2 (Th versus So versus Sh versus Un) = 29,1, d.f. = 9, P < .001. All treatments 
combined: X2 (Th + So + Sh versus Un) = 24.48, d.f. = 3, P < .001. Each treated contrasted with control: X2 (Th versus Un) = 11.4, d.f. 
= 3, P < .01; x2 (So versus Un) = 22.3, d.f. = 3, P < .001; x2 (Sh versus Un) = 14.3, d.f. = 3, P < .006. Each treatment contrasted with each 
other: X2 (Th versus So) = 4.5, d.f. = 3, .50 > P > .20; X2 (Th versus Sh) = 0.7, d.f. = 3, P > .50; X2 (So versus Sh) = 2.3, d.f. = 3, P = .50. 

Frequency of response 
Percent of 

Treatment Indi- Litters Tonic seizure tonic 
group vidal (No.) No Wild Clonic seizures 

(N.) response running seizure Recovered Fatal Total that are fatal 

Thienylalanine 96 17 21.9 + 4.2 7.3 + 2.7 25.0 ? 4.4 17.7 ? 3.9 28.1 ? 4.6 45.8 ? 5.1 61.4 ? 7.3 
Solvent 103 17 14.6 + 3.5 13.6 + 3.4 19.4 - 3.9 15.5 + 3.6 36.9 ? 4.8 52.4 + 4.9 70.4 ? 6.2 
Sham 104 19 22.1 + 4.1 9.6 + 2.9 22.1 - 4.1 15.4 - 3.5 30.8 ? 4.5 46.2 ? 4.9 66.7 + 6.8 
Unhandled 120 20 39.2 + 4.5 10.8 ? 2.8 23.3 ? 3.9 6.7 ? 2.3 20.0 + 3.7 26.7 + 4.0 75.0 + 7.7 
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the abdomen and held in place with noth- 
ing injected. A fourth group served as 
unhandled control subjects. 

Litters were weaned 21 days after 
birth, at which time mice were weighed 
and placed, individually or in groups of 
three, into a galvanized wash tub to 
which was attached a 4-inch bell (1 inch 
= 2.54 cm); the tub was suspended in an 
illuminated sound deadening chamber 
with a plexiglass lid to permit observation 
(2, 6). After the mice were acclimatized to 
the chamber for 30 seconds, the bell was 
rung for 60 seconds; during this time the 
mice were observed and their seizure re- 
sponses (7) were scored. On day 23, the 
mice were subjected to the sound stress 
in the same order and according to the 
same procedure. Almost no responses to 
sound stress occurred at 21 days. Re- 

sponses at 23 days lay on a continuum 
from wild running through clonic (spas- 
modic and partial) seizures followed by 
recovery, or to tonic (rigid and complete) 
seizures. All seizures were preceded by 
wild running. Fully two-thirds of the 
tonic seizures resulted in death of the 
animal (Table 1). 

Chi-square analysis for homogeneity 
(8) revealed that each group under treat- 
ment differed significantly from controls, 
and the three groups under treatment 
were identical to one another. The same 
situation obtains when one compares the 
elicitation of any response (wild running, 
clonic and tonic seizures combined) with 
the failure of the sound stress to elicit 
any response at all. Thus any of the three 
treatments applied to pregnant mice in- 
creased audiogenic seizure susceptibility 
to the same extent relative to control 
treatment. It thus seems that the act of 
manipulating the pregnant mouse, rather 
than the test substance, produced suffi- 
cient stress to cause the behavioral 
differences in the progeny. 
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Whether an animal had been subjected 
to the sound stress individually or as part 
of a group of three made no difference in 
any experiment, although this parameter 
does affect other lines of mice (9). Simi- 
larly, the proportion of tonic seizures 
from which animals failed to recover was 
the same in all experiments. In all but 
the sham-treated group, chi-square anal- 
ysis suggested differences in animals from 
brother-sister matings contrasted with 
those from continuously outbred popu- 
lations. But the directions of the differ- 
ences varied, and an overall test of 
heterogeneity of pooled data from all 
four experimental groups revealed no 
significance (2 = 7.71, d.f. = 3,P < .06). 
There was considerable variation in re- 
sponse between litters in all experiments. 
Analyses of variance (10) in which 
responses were scaled from 1 (no re- 
sponse) to 4 (tonic seizure) revealed 

significant litter effects among all four 
groups. Mortality of pups before wean- 
ing was approximately 4 percent in all 
groups. 

Reports of postnatal effects on proge- 
ny of handling or otherwise mildly stress- 
ing the dam during gestation are frequent 
(11). The subjects have usually been 
rats, and the effects observed have been 
on normal behaviors. There are com- 
parable reports in which sham injection 
of dams (or injection of distilled water, 
saline, or other control fluids) influences 
behavior, body weight, or adrenal func- 
tion of their progeny (12). Similar post- 
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natal effects of handling during gestation 
are known also in mice (13). Handling of 
dams during gestation may, in fact, re- 
sult in increased embryo mortality (14). 
So profound an influence of a mild mater- 
nal stress on susceptibility to audiogenic 
seizures serves as a caution to investiga- 
tors using audiogenic seizures as a mea- 
sure and to those attempting to assess 
postnatal effects of prenatal treatments. 
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