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Fig. 3. Experimental design. Before or after photoreaction with trioxsalen, DNA is isolated 
from chromatin (or intact nuclei or cells) by incubation at 50?C for 5 to 12 hours with 1 percent 
sarkosyl, 0.1M EDTA, 0.01M tris, pH 8.6, and nuclease-free Pronase (1 mg/ml). The DNA is 

then banded by equilibrium sedimentation in a gradient of Cs2SO4 and dialyzed exhaustively 
against 0.01M tris, pH 7.6, 0.001M EDTA prior to preparation for electron microscopy as 

described in the text. 
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len probe to preserve a linear record of 
its interaction sites appears to present 
unique potentials in the study of chroma- 
tin structure. 
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Karyotype Conservation and Difference in DNA 

Amount in Anguilloid Fishes 

Abstract. The two Pacific anguilloid fishes Anguilla japonica and Astroconger 

myriaster, belonging to the different families, appear to have identical chromosome 

numbers (2n = 38) and karyotypes, including one pair of conspicuous heteromorphic 
chromosomes in females. Cytophotometric measurements, however, indicate a con- 

siderable difference in DNA content between the two species. 

Karyotype Conservation and Difference in DNA 

Amount in Anguilloid Fishes 

Abstract. The two Pacific anguilloid fishes Anguilla japonica and Astroconger 

myriaster, belonging to the different families, appear to have identical chromosome 

numbers (2n = 38) and karyotypes, including one pair of conspicuous heteromorphic 
chromosomes in females. Cytophotometric measurements, however, indicate a con- 

siderable difference in DNA content between the two species. 

Considerably different genome sizes 
(DNA content) have been reported in the 

divergent fish orders (1, 2). In this con- 
nection, Ohno (1) suggested that quan- 
tum evolution from fish to mammal was 
not accomplished simply by point muta- 
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rather through duplicated genes which 
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genes with previously nonexistent func- 
tions. It is also believed that the primi- 
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mately 48 acrocentric chromosomes (3). 
More diverse teleosts arose from this an- 
cestor through gene duplication. In some 
instances, this did not accompany a 
change in number and shape of chromo- 
somes. In others, the mechanisms of per- 
icentric inversions, Robertsonian trans- 
locations, deletions, and polyploidy 
were responsible for an increase or a de- 
crease in chromosome number and size 
(1). The karyotypes of anguilloids are 
little known; only two Atlantic species of 
the eel family Anguillidae have been ana- 
lyzed (4, 5). Both of them have identical 
chromosome number (2n = 38) and simi- 
lar heteromorphic pair. Our study estab- 
lishes the relation between karyotypes 
and genome size of the two Pacific anguil- 
loid species Anguilla japonica and As- 
troconger myriaster, which belong to the 
families Anguillidae and Congridae, re- 
spectively. We used only female speci- 
mens. The sex of the specimen was deter- 
karyotypes of these species are indis- 
tinguishable from each other and are 
very similar to those of the two de- 
scribed Atlantic species. 

Adult Japanese eels, Anguilla japo- 
nica, and conger eels, Astroconger myri- 
aster, were collected from the Han River 
in Korea and from the Yellow Sea, re- 
spectively. In spite of a considerable 
difference in their genome size, the 
mined by gonadal histology. Karyotypes 
are based on air-dryings of kidney cells 
and cultured leukocytes (6) or renal cells 
(7). 

Upon comparing the karyotypes of 
two species (Fig. 1), we were impressed 
by their apparent similarities in spite of 
phylogenetic distance, that is, belonging to 
different families. The diploid chromo- 
some numbers of both species were 
found to be 38, of which 20 were meta- 
centric-submetacentric and 18 were acro- 
centric chromosomes. Furthermore, 
both anguilloids contained one pair of 
chromosomes that did not match. This 
mismatched heteromorphic pair (ZW?) 
was made of the largest and the smallest 
metacentrics. The apparently similar het- 
eromorphic pair was also found in fe- 
males of the American eel, Anguilla ros- 
trata (4), as well as in an unspecified sex 
of European eel, Anguilla anguilla (5). 

Apart from revealing the extremely 
conservative trend in karyotypic evolu- 
tion within Anguilliformes, our study 
suggests an apparent paradox with re- 
spect to the genome size. The ratio of nu- 
clear DNA in the Japanese eel to that in 
the conger eel, as measured by the two- 
wavelength method (8), was 2 to 3, that 
is, 304 and 426 arbitrary units, respective- 
ly. The sizes of cell and nucleus of 
erythrocytes in conger eels were also 
2 JULY 1976 

Table 1. Comparison of nuclear DNA content and erythrocyte size in females from two species 
of Anguilliformes. Each value represents the mean of five specimens. The relative DNA content 
was measured from 100 nuclei of the Feulgen-stained hepatocytes in each species (Olympus 
microspectrophotometer). The relative cellular and nuclear sizes of 100 cells of each species 
were determined from erythrocyte smears stained with Giemsa. Results are given in arbitrary 
units (A.U.) + standard deviation (S.D.). 

DNA content Erythrocyte size (A.U. + S.D.) 
Species (A.U. ? S.D.) Cell Nucleus 

Anguillidae: Anguillajaponica 304 ? 29 818 ? 88 190 + 30 
Congridae: Astroconger myriaster 426 ? 45 1170 ? 144 280 + 48 

a a o i. 

nit fA A 1 *^ 

6x 

Fig. 1. Karyotypes of females from Japanese eel (a) and conger eel (b) showing the karyotype 
conservation, including a conspicuous heteromorphic pair (arrow). The analyses comprised 82 
and 34 karyotypes among 685 and 118 countable metaphases from 13 specimens of Japanese eel 
and six specimens of conger eel, respectively. Bars, 5 ,tm. 

markedly larger than corresponding cells 
of Japanese eels (Table 1). 

Most fishes have morphologically un- 
differentiated sex chromosome, and the 
genetic difference between the X and Y 
or the Z and the W is usually very small 
(9). Under this circumstance, polyploidy 
may not invariably disturb the sex deter- 
mining mechanism; that is, it is not in- 
compatible with fertility. Thus, poly- 
ploidy is an important evolutionary 
mechanism in some groups of fishes such 
as in the orders Cypriniformes (10) and 
Isospondyli (11). However, hetero- 
morphic sex chromosomes of the XX- 
XY, XX-XO, and ZW-ZZ types (12), as 
well as multiple sex chromosomes (13), 
have been described in certain groups of 
fishes. In contrast to genic control, this 
well-established chromosomal sex deter- 
mining mechanism may negate the possi- 
bility of polyploid evolution as it does in 
higher vertebrates. From this point of 
view, the presence of a heteromorphic 
chromosome pair which may reflect dif- 

ferentiated sex chromosome of the ZW 
type in anguilloid fishes may be one of 
the reasons why their karyotype evolu- 
tion has been extremely conservative. 

There is abundant evidence from iso- 
zyme studies in both fishes (14), and in 
other vertebrates (15), that gene dupli- 
cation occurred. The discovery of differ- 
ent genome size within the confines of a 
conserved anguilloid karyotype suggests 
that gene duplication, if it occurred, was 
strictly regional (tandem duplication) in 
Anguilliformes. 

EUN Ho PARK, YUNG SUN KANG 
Department of Zoology, College of 
Natural Science, Seoul National 
University, Seoul 151, Korea 
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