
Reye's syndrome, is postulated to have 
toxic qualities (23). This may or may not 
be related to its neuramidinase-like activ- 
ity. If other viruses-for example, 
EMC-have this property, it is possible 
to postulate an interaction between a vi- 
ral toxin and a chemical toxin. If other vi- 
ruses, particularly those reputed to be as- 
sociated with Reye's syndrome, also 
have such toxic properties this theory 
could have validity. 

2) Simple virus infection allowing re- 
lease of a stored chemical toxin. Virus in- 
fection could act as a releasing factor for 
stored chemical toxins. A similar phe- 
nomena is seen in children exposed to 
lead for a long period who develop acute 
encephalopathy after infectious contact 
(17). 

3) Chemical enhancement of viral le- 
thality by increasing replication and 
spread. Cell necrosis, however, has not 
been observed in the animal model and 
thus this hypothesis would have founda- 
tion only if the virus caused profound al- 
terations in cell function without cell 
necrosis. 

From 10 to 20 million gallons of petro- 
leum oil by-products are used as pesticide 
dispersal agents and emulsifiers (24) each 
year in the United States alone. With this 
widespread use it is increasingly impor- 
tant to know the toxic nature of these 
chemicals, which are mainly ignored be- 
cause they are considered safe on sub- 
stantially insufficient grounds. The safe- 
ty of these products is, of course, of 
increased importance in that such com- 
pounds are so widespread in our environ- 
ment, being present in manufactured 
products other than insecticides. The 
effects in exposed humans may be cumu- 
lative, and the potential toxicity of these 
compounds could, assume considerable 
significance both or inherent toxicity and 
enhancement of o6ther agents of viral or 
toxic nature. 4 
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investment is wasted. If the male is at- 
tracted to and copulates with the female 
only at the time of ovulation, there is the 
possibility that she has been inseminated 
prior to his copulation. In polygynous 
and promiscuous species cuckoldry is of 
minor consequence since the male typi- 
cally does not contribute to the reproduc- 
tive effort beyond insemination, the cost 
of which, in energy and lost opportuni- 
ties to mate with other females, is rela- 
tively small. However, when the male pa- 
rental investment is large, mechanisms 
that ensure the genetic paternity of the in- 
vestor increase in importance. Accord- 
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Table 1. Median performance levels and quartile deviations (Q) of males (N = 35) given 15 
minutes with females that had been either exposed to other males (preexposed) or isolated for 
several weeks (unexposed). 

Stimulus condition 

Male behavior Preexposed Unexposed 

Median Q Median Q 

Nest soliciting (duration in seconds) 90.0 112.8 185.0 182.6 
Bowing and cooing (number of displays) 20.0 20.8 20.0 29.0 
Chases (number of incidents) 18.0 25.5 10.0 7.7 
Pecking (number of incidents) 12.0 13.3 3.0 3.4 
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Courtship Differences in Male Ring Doves: 

Avoidance of Cuckoldry? 

Abstract. Male ring doves exhibit less courtship and more aggressive behavior to- 
ward females that have recently associated with other males than to females that 
have been isolated. The difference in response may be related to the differing proba- 
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ing to Trivers, an effective strategy for a 
male in such circumstances is to seques- 
ter a female for a period long enough to 
determine whether egg laying is immi- 
nent. Early egg laying or other evidence 
that the female has been recently ex- 
posed to another male should reduce her 
attractiveness and be reflected in the 
male's behavior toward her. 

In the ring dove, the amount of paren- 
tal investment provided by the male is 
substantial; both sexes construct the 
nest, incubate the eggs, and feed and 
care for the young. Ovarian activity, 
which culminates in ovulation and egg 
laying, is stimulated by male courtship 
(2); the prominent "nest-soliciting" dis- 
play of the male appears to be particular- 
ly effective in the induction of ovarian ac- 
tivity in the female (3). Although the fe- 
male herself normally exhibits little 
courtship behavior when first paired with 
the male, the secretion of ovarian steroid 
hormones induced by the male stimu- 
lates her to engage in the nest-soliciting 
display with increasing frequency (4). 
This display by the female, coupled with 
her attachment to the nest site, seems to 
signal her readiness to construct a nest, 
an endeavor that the male and female 
pursue cooperatively (5). Thus the fe- 
male's nest soliciting is important to the 
social synchrony of nest construction 
but also indicates that she is rapidly ap- 
proaching ovulation as a result of recent 
exposure to a male. According to Tri- 
vers' hypothesis, male ring doves should 
be wary of females that show nest-solic- 
iting behavior too soon after their initial 
encounter, since such early nest solicit- 
ing reflects the fact that the females have 
been courted and, possibly, inseminated 
by other males. In our study we com- 
pared the courtship and aggressive re- 
sponses of male ring doves when they 
were introduced to females that had been 
either isolated for several weeks or stim- 
ulated by other males to the point of ac- 
tive nest soliciting. 

All males were hatched in the laborato- 
ry and, at the time of the study, were sex- 
ually mature. Immediately prior to test- 
ing they spent a minimum of 2 weeks in 
visual (but not auditory) isolation from 
other animals. Seventeen males were ob- 
served, first with a "preexposed" fe- 
male, then, 4 days later, with an "unex- 
posed" female; 18 males were tested in 
the reverse order. These tests were con- 
ducted between 0900 and 1300 hours in 
an 89-cm cubical cage supplied with 
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ducted between 0900 and 1300 hours in 
an 89-cm cubical cage supplied with 
food, water, nesting material, and a glass 
nest bowl. One group of stimulus fe- 
males was prepared for testing by giving 
them six 15-minute exposures to an ac- 
tive male (not a subject male) at 1- or 2- 
day intervals. These females readily en- 
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gaged in nest-soliciting displays when in- 
troduced to the test males. A second 
group of stimulus females was given a 
parallel series of exposures to the empty 
test cage. None of these showed nest-so- 
liciting behavior when introduced to the 
test males. 

Table 1 shows the differences in male 
performance on exposure to each kind of 
stimulus female (6). Unexposed females 
elicited much more nest-soliciting activi- 
ty from the males than did preexposed fe- 
males (t = 97, P < .0094). Conversely, 
preexposed females provoked more 
frequent chasing and aggressive pecking 
(t = 27.5, P < .00006; and t = 84, 
P < .0004, respectively). Typically, the 
nest-soliciting displays of the male when 
in the presence of a preexposed female 
occurred prior to any nest-soliciting per- 
formance by the female. In most in- 
stances the male terminated his nest so- 
liciting and attacked the female when she 
began her own nest-soliciting display. 

We found no clear relation between 
the condition of the female and the fre- 
quency of male bowing and cooing, a sec- 
ond behavioral display (t = 251.5, 
P > .94). However, this behavior is per- 
formed most frequently during the first 
few moments after meeting a female or 
another male, and its principal function 
may be to identify the species and sex of 
the performer (7). 

The female dove that has been hormo- 
nally primed by a male is placed in a diffi- 
cult position if she loses her mate prior to 
nest construction and egg laying. Three 
to 4 days of male courtship are suf- 
ficient to induce ovulation and egg laying 
in a majority of females (8). Thus, if the 
female ring dove loses her mate after 
such stimulation, she must recruit anoth- 
er before her eggs are laid. If she man- 
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The phenomenon of state-dependent 
learning has attracted interest with re- 
gard to both its underlying mechanism 
(1, 2) and its implication for clinical prac- 
tice (3, 4). In both animals (1, 5) and hu- 
mans (2, 3, 6), when a drug affects per- 
formance during acquisition of new mate- 
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Stimulant-Related State-Dependent Learning in 

Hyperactive Children 

Abstract. Hyperactive and nonhyperactive children performed a learning task in 
two states, while being treated with stimulant medication (methylphenidate) and 
while taking a placebo, and were testedfor retention of each class of learned material 
in both states. Symmetrical state-dependent learning was demonstrated in the hyper- 
active group but not in the nonhyperactive group. The state-dependent effect was 
contingent on the presence of drug-inducedfacilitation during initial learning. This is 
apparently the first report on record of state-dependent learning with a drug agent 
that facilitates rather than impairs performance of human subjects. 
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