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populations are larger in test size than white 
ones, and kummerform populations are larger 
than normalform ones (6). The pattern size varia- 
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Herbivorous zooplankton are tradi- 
tionally considered to reduce the abun- 
dance of algae during grazing (1). How- 
ever, recent studies show that primary 
productivity and the numbers of certain 
algal species increase in the presence of 
grazers (2-4). Nutrients, such as phos- 
phorus, that are excreted by zooplank- 
ton (5) may stimulate the growth of algae 
not cropped during grazing. In this 
study, the uptake of excreted phos- 
phorus and carbon by algae known to 
survive grazing (4) is documented and 
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the contribution of this nutrient source to 
algal primary productivity and popu- 
lation growth is determined. 

Cells of the colonial green alga, 
Sphaerocystis schroeteri, increase in 
number when the number of grazers is 
experimentally increased (3). Colonies 
consist of cells embedded in a complex 
polysaccharide sheath. They are in- 
gested by Daphnia magna, D. galeata 
mendotae, and other natural predators, 
but more than 90 percent of the S. 
schroeteri cells are undamaged by gut 
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passage through the grazers (4). Large 
colonies are broken into smaller clusters 
of cells with the loss of a few cells and 
sheath material. They are fed on by D. 
magna at a lower rate and are assimi- 
lated less efficiently than unsheathed uni- 
cellular green algae, such as Chlamydo- 
monas reinhardi (Table 1) (6). 

During gut passage, the intact cells of 
S. schroeteri take up nutrients from the 
remains of edible algae and from Daph- 
nia metabolites. Light-dependent uptake 
and incorporation of phosphorus and car- 
bon from algal remains were examined 
by allowing D. magna to fill their guts 
with a mixture of unlabeled S. schroeteri 
and Ankistrodesmus falcatus that was 
saturation-labeled with either NaH14CO3 
or K2H33PO4 (7). The spindle-shaped 
single cells of A. falcatus are easily as- 
similated by Daphnia and are easily dis- 
tinguished from the palmelloid gelati- 
nous colonies of S. schroeteri (Fig. la). 
After 1 hour of feeding in either the light 
or the dark, animals were anesthetized, 
fixed, dehydrated, embedded, sectioned, 
and examined for the distribution of ra- 
dioactivity by using microautoradiogra- 
phy (8). 

The heavy grain density over ingested 
S. schroeteri cells (Fig. 1, b and c) docu- 
ments their uptake and incorporation of 
33P from A. falcatus remains in both the 
light and the dark. Carbon-14 is taken up 
and incorporated more in the light than 
in the dark. No incorporation of label by 
control S. schroeteri from A. falcatus 
cells in the feeding suspension was de- 
tected. The autoradiographs give a con- 
servative indication of uptake since sol- 
uble label is removed during washing and 
dehydration and only label incorporated 
into fixed, insoluble cell components re- 
mains. Phosphorus uptake in both the 
light and the dark is expected since up- 
take and storage of phosphorus is inde- 
pendent of light (9). The predominance 
of light-dependent carbon uptake, how- 
ever, suggests that it is primarily the re- 
sult of autotrophic and not heterotrophic 
processes. The accumulated phosphorus 
and carbon may be taken up in both or- 
ganic and inorganic forms. 

Uptake of phosphorus from the metab- 
olites of Daphnia was documented by 
feeding unlabeled S. schroeteri to D. 
magna that were saturation-labeled with 
133P and had empty guts (10). Feces con- 
taining intact S. schroeteri were collect- 
ed and were examined for the distribu- 
tion of radioactivity by using micro- 
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tor. The Daphnia break up the outer protective gelatinous sheath that surrounds 
Sphaerocystis colonies, but most of the algal cells emerge from Daphnia guts intact 
and in viable condition. During gut passage, these viable cells take up nutrients, 
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lation caused by grazing. Nutrients regenerated by grazers may produce the summer 
bloom of gelatinous green algae during the seasonal succession of lake phytoplank- 
ton. 
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growth was determined by direct obser- 
vation of algal cells that survived gut pas- 
sage through D. magna and cells, from 
the same culture, that were not ingested 
by Daphnia (11). The number of living 
cells increased significantly (P < .01 as 
determined by an analysis of variance) 
from 100 + 8 at the beginning to 164 ? 15 
at the end of the first 24 hours after gut 
passage. No significant change occurred 
in the noningested algal cells. These num- 
bered 106 ? 10 immediately after gut 
passage and 107 ? 9 after 24 hours. 
Therefore, the algae ingested by D. magna 
increased in number by 63 ? 6 percent 
(mean ? standard deviation) during the 
first 24 hours after gut passage. Primary 
productivity, measured as the rate of car- 
bon fixation, also increased in S. schroe- 
teri cultures enriched with Daphnia ex- 
cretia (12). Nutrients excreted by Daph- 
nia as algal remains and animal 
metabolites can, therefore, stimulate pri- 
mary productivity. These nutrients are 
presumably available in high concentra- 
tions in the Daphnia gut. They are taken 
up and stimulate the division of algae 
that survive gut passage. 

Differential digestion and nutrient en- 
richment of gelatinous green algae may 
be important factors determining the 
growth and seasonal succession of algae 
in lakes (3, 13). In in situ grazing experi- 
ments, S. schroeteri numbers increase 
when the number of grazers is increased 
(3). The S. schroeteri are ingested by the 
dominant grazers, but more than 90 per- 
cent of the cells emerge from the grazers' 
guts intact and in viable condition (4). As 
shown in this study, there can be a 63 
percent increase in the number of S. 
schroeteri cells in 24 hours due to gut 
passage. During the summer when these 
algae are abundant, they are likely to be 
ingested one to four times daily (14). 
Under these grazing conditions, the nu- 
trient enrichment during gut passage 
can more than compensate for the losses 
of cells and sheath material during 
grazing and can result in algal population 
growth. 

In many lakes, the spring phytoplank- 
ton bloom consists of nongelatinous uni- 
cellular algae such as cryptomonads, dia- 
toms, naked green algae, and nanno- 
plankton. These algae have rapid growth 
rates and bloom by utilizing nutrients 
supplied during spring turnover. They 
are easily ingested and assimilated by 
grazers. As nutrients are depleted and 
grazer populations increase, these algae 
decline in number and are replaced by co- 
lonial gelatinous green algae, such as S. 
schroeteri, which bloom in the summer 
when nutrients such as phosphorus and 
nitrogen are in limiting supply in the wa- 
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Fig. 1. Microautoradiographs showing uptake and incorporation of 33P by Sphaerocystis 
schroeteri during gut passage through Daphnia magna. Sources of phosphorus are digested 
algal cell remains (a to c) and Daphnia metabolites (d). (a) Food bolus in the mandibles of 
D. magna contains gelatinous colonies of spherical S. schroeteri cells surrounded by numerous, 
smaller, spindle-shaped cells of the digestible alga Ankistrodesmus falcatus (x 200). Ankistro- 
desmus falcatus was labeled with K2H33PO4 before feeding. (b) Grain density in the emulsion 
overlying (a) documents the presence of :3P in A. falcatus and its uptake by previously unlabeled 
cells ofS. schroeteri ( x200). (c) Section through the rectum of D. magna showing accumulation 
of 33P in intact S. schroeteri cells. The A. falcatus cells have been broken up and dispersed. Clear 
circles are 12-,um plastic beads (X250). (d) Heavy accumulation of :3P by a colony of S. 
schroeteri collected from the feces of a saturation-labeled D. magna (x 300). 

ter column (15). Presumably, these algae 
rely on grazers as rich localized sources 
of nutrients. Their loss of some sheath 
material and cells to the grazers is more 
than compensated for by the nutrients 
gained during gut passage. One can eas- 
ily conceive of this as a nascent sym- 
biosis between aquatic plants and ani- 
mals. These gelatinous algae are poorly 

Table 1. Feeding rates (F), assimilation rates 
(A), and assimilation efficiencies (100 x A/F) 
of Daphnia magna fed Sphaerocystis schroe- 
teri and Chlamydomonas reinhardi. Rates are 
expressed as micrograms of algae (dry weight) 
per animal per hour. Sphaerocystis schroeteri 
is a gelatinous green alga that survives gut pas- 
sage through Daphnia with the loss of some of 
its cells and sheath. The naked, single cells of 
the green alga C. reinhardi are easily broken 
up and assimilated by Daphnia. Abbrevi- 
ations: X, mean; S.E., standard error; and N, 
number of experiments. 

As- 

Feeding rate Assimilation simi- 
rate lation 

effi- 
ciency 

~X S.E. N X S.E. N (%) 

Sphaerocystis schroeteri 
5.32 0.87 10 1.78 0.21 9 33 

Chlamydomonas reinhardi 
13.13 1.99 9 7.90 1.20 7 60 

assimilated and are probably of low nutri- 
tional value to the grazers, which ulti- 
mately decline in numbers. The phyto- 
plankton then shifts to a community 
dominated by slow-growing inedible 
forms, such as blue-green algae, which 
survive under the nutrient-deplete condi- 
tions of late summer and early autumn. 
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tubes with 10 ml of deficient medium in which D. 
magna swam (two animals per milliliter) for 2 
hours before use. To each tube 0.5 ,uc of 
NaH14CO3 was added and all the tubes were 
incubated at 20?C for 2 hours in cool white 
fluorescent lighting (100 microeinstein m-2 
sec- 1). Carbon-14 fixation rates in deficient and 
Daphnia-enriched medium were 554 - 124 
dpm/ml and 12,596 - 982 dpm/ml, respectively. 

13 . K.G. Porter, Am. Sci., in press. 
14. J. F. Haney, Arch. Hydrobiol. 72, 87 (1973). 
15. G. E. Hutchinson, Am. Sci. 3, 269 (1973). Low 
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Minute particles suspended in the 
earth's atmosphere (the atmospheric 
aerosols) interact with the atmospheric 
radiation field and potentially can affect 
climate by increasing or decreasing the 
radiation that passes into or out of the 
earth-atmosphere system (1). The aero- 
sol influence on the heat balance inter- 
ests scientists mainly because of the pe,- 
sibility that fluctuations in the aerosol 
concentrations may be responsible for 
climatic changes. For instance, there is 
evidence of a correlation between dust 
layers found in ice cores and the tem- 
perature (as determined from oxygen 
isotopic analyses) at the time the layers 
were deposited, with dusty periods 
corresponding to lower temperatures 
(2). 

The earth's aerosol load is known to 
undergo natural variations due to occa- 
sional injections of ash and gas into the 
stratosphere by volcanic eruptions (3) 
and to variations in surface sources, 
such as changes in vegetation or changes 
in the size of desert areas. Of particular 
interest, however, is the possibility that 
the global aerosol load is also significant- 
ly altered by human activity, with effects 
ranging from pollution of the strato- 
sphere by supersonic transports to indus- 
trial process pollution. In view of this, it 
is important to establish a quantitative 
measure of so-called baseline data on 
aerosols to use as a reference against 
which future changes can be gauged. 

In this report I discuss the background 
aerosol parameters at the Mauna Loa Ob- 
servatory (MLO), Hawaii, and the South 
Pole, as derived from precision multi- 
wavelength measurements of the total 
vertical optical atmospheric transmis- 
sion made by using the sun as a standard 

Minute particles suspended in the 
earth's atmosphere (the atmospheric 
aerosols) interact with the atmospheric 
radiation field and potentially can affect 
climate by increasing or decreasing the 
radiation that passes into or out of the 
earth-atmosphere system (1). The aero- 
sol influence on the heat balance inter- 
ests scientists mainly because of the pe,- 
sibility that fluctuations in the aerosol 
concentrations may be responsible for 
climatic changes. For instance, there is 
evidence of a correlation between dust 
layers found in ice cores and the tem- 
perature (as determined from oxygen 
isotopic analyses) at the time the layers 
were deposited, with dusty periods 
corresponding to lower temperatures 
(2). 

The earth's aerosol load is known to 
undergo natural variations due to occa- 
sional injections of ash and gas into the 
stratosphere by volcanic eruptions (3) 
and to variations in surface sources, 
such as changes in vegetation or changes 
in the size of desert areas. Of particular 
interest, however, is the possibility that 
the global aerosol load is also significant- 
ly altered by human activity, with effects 
ranging from pollution of the strato- 
sphere by supersonic transports to indus- 
trial process pollution. In view of this, it 
is important to establish a quantitative 
measure of so-called baseline data on 
aerosols to use as a reference against 
which future changes can be gauged. 

In this report I discuss the background 
aerosol parameters at the Mauna Loa Ob- 
servatory (MLO), Hawaii, and the South 
Pole, as derived from precision multi- 
wavelength measurements of the total 
vertical optical atmospheric transmis- 
sion made by using the sun as a standard 

also stimulate green algal growth [J. Shapiro, 
Science 179, 382 (1973); ibid. 182, 306 (1973); J. 
C. Cohen, ibid., p. 306]. 

16. I thank R. K. Trench for advice on experimental 
methods. R. K. Trench, J. Porter, S. Ohlhorst, 
D. Janzen, C. Yocum, J. Korstad, D. S. Weth- 
ey, and D. Titman provided valuable comments 
on the manuscript. L. Hewitt, D. Heisey, T. 
Nerad, and K. Belen lent technical assistance. 
Research was supported by NSF grant BMS 75- 
11893. 

3 February 1976; revised 16 April 1976 

also stimulate green algal growth [J. Shapiro, 
Science 179, 382 (1973); ibid. 182, 306 (1973); J. 
C. Cohen, ibid., p. 306]. 

16. I thank R. K. Trench for advice on experimental 
methods. R. K. Trench, J. Porter, S. Ohlhorst, 
D. Janzen, C. Yocum, J. Korstad, D. S. Weth- 
ey, and D. Titman provided valuable comments 
on the manuscript. L. Hewitt, D. Heisey, T. 
Nerad, and K. Belen lent technical assistance. 
Research was supported by NSF grant BMS 75- 
11893. 

3 February 1976; revised 16 April 1976 

source of irradiance over the wavelength 
interval 400 < X < I000 nm. The mea- 
surements were made at the South Pole 
in December 1974 and at MLO in March 
1975. In addition, selected data acquired 
in Alaska are discussed. 

The total vertical optical extinction of 
sunlight in the earth's atmosphere is con- 
veniently expressed in terms of an opti- 
cal depth, TT, and is due to molecular or 
Rayleigh scattering, TR; gaseous absorp- 
tion, TG, and scattering and absorption by 
the atmospheric aerosols, TA. The latter 
term is of interest here and was derived 
by subtracting tabulated values of TR and 
values of G = T03 + TNO2(4,5). 

The aerosol optical depth curves (aero- 
sol extinction spectra) as a function of 
wavelength were used to derive aerosol 
parameters by referring to curves calcu- 
lated from Mie theory, assuming that the 
aerosols (i) are spherical with an index of 
refraction n = 1.5 + iO.002 and (ii) are 
distributed by size according to a modi- 
fied gamma size distribution function de- 
fined by the relationship dnldr= 
a r2e-br, where dn/dr is the number density 
of aerosol particles and r is the particle 
radius (6). With appropriate values cho- 
sen for the coefficients a and b, the modi- 
fied gamma size distribution function 
defined by the relationship dnldr= 
a r2e-b, where dnldr is the number den- 
sity of aerosol particles and r is the 
particle radius (6). With appropriate 
values chosen for the coefficients a and b, 
the modified gamma distribution function 
can closely simulate actual tropospheric 
or stratospheric aerosol size distributions 
derived from direct sampling techniques. 
Although the fit of the modified gamma 
distribution function may not always be 
perfect, when a and b are properly cho- 
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Properties of the Background Global Aerosol 
and Their Effects on Climate 

Abstract. Properties of the aerosols above Hawaii, Alaska, and the South Pole are 
derived from sun photometry at several wavelengths. The mass loading of aerosol 
material is several milligrams per square meter. At the South Pole the mean particle 
radius is 0.04 micrometer; at Hawaii in March 1975 there was a thin volcanic layer 
with a mean particle radius of 0.1 micrometer. The aerosols cause heating of the 
earth-atmosphere system at the poles and cooling at low latitudes. 
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