
lowest dose that has been tested and 
found to be carcinogenic in rodents. 
Such an exposure is greater than the 
known DMN exposures from nitrite pre- 
served foodstuffs (18). The public health 
effects of exposure to such concentra- 
tions of carcinogens remain to be as- 
sessed. Of possible interest in this con- 
nection are recent epidemiological find- 
ings (19) which, despite their possible 
limitations, suggest an association be- 
tween ambient community NOx levels 
and cancer. 

Note added in proof: The experiments 
reported here have since been repeated 
by several independent workers (20, 21), 
including scientists from the chemical 
companies involved (22, 23). They have 
all confirmed the presence of DMN by 
GLC-mass spectrometry techniques. In 
Baltimore, the source was found to be 
the chemical plant which was using DMN 
as an intermediate; the plant was ordered 
closed as of April 1976 (21). In Belle, 
the DMN was traced to the amine manu- 
facturing facility. This company has now 
reported that they have found a point- 
source discharge of DMN (23). 
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These observations suggest an ecologic 
model in which foraminiferal species 
reach maximum average test size in their 
optimum water masses, and decrease in 
size away from such areas (4). This im- 
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Fig. 1. (A) Variations in maximum average test size (5, 6) as a function of winter temperature in 
the North Atlantic for populations of (a) G. bulloides (bul), (b) G. truncatulinoides right (trun- 
R), (c) G. truncatulinoides left (trun-L), and (d) G. trilobus (tril). The scale on the left is for 
populations of G. truncatulinoides; that on the right is for G. bulloides and G. trilobus. (B) 
Correlation of abundances and median test sizes in right- and left-coiling populations of G. 
pachyderma. [Data are from Kennett (2)] 
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plies that for subtropical or subpolar spe- 
cies, size should decrease with both in- 
creasing and decreasing temperatures. 

Figure 1A shows that populations of 
the subpolar species Globigerina bul- 
loides are larger in test size in the north- 
central Atlantic south of the polar front, 
at 60?N latitude, between winter temper- 
atures of 5? and 10?C, and decrease in 
size to the north and south (5, 6). By con- 
trast, the tropical species Globigeri- 
noides trilobus is largest in tropical wa- 
ters, at winter temperatures greater than 
20?C, and decreases in size with decreas- 
ing temperature. Similar data have been 
obtained for a second tropical species, 
Globigerinoides ruber, and for Orbulina 
universa, which shows a clear pattern of 
increasing test size with temperature (7). 
For the subtropical species Globorotalia 
truncatulinoides, right- and left-coiling 
populations are both largest in subtropi- 
cal waters (albeit at different temper- 
atures and salinities) and decrease in size 
with increasing and decreasing temper- 
atures. It is important to note that right- 
coiling populations of G. truncatuli- 
noides are larger in test size than are left- 
coiling ones. Finally, Fig. lB shows size 
variations in the polar species Globigerina 
pachyderma. This species is also sepa- 
rated on the basis of right and left coiling 
directions, since left-coiling forms in- 
crease in abundance with decreasing tem- 
perature and are the only species present 
in polar waters. Right-coiling forms are 
dominant in subpolar waters and de- 
crease in abundance with increasing and 
decreasing temperatures. Figure 1B 
shows a close correlation between size 
variations and abundance changes for 
this species (8). These data suggest that 
there is an optimum region for devel- 
opment of maximum size and that this re- 
gion corresponds to the preferred water 
mass for each species. 

The hypothesis outlined above is con- 
tradicted by B6 et al. (1), who suggested 
that for populations of Orbulina universa 
in the Indian Ocean, "larger tests do not 
necessarily indicate optimum regions." 
Figure 2, however, shows that for other 
species the temperature-salinity regions 
where maximum sizes occur are coinci- 
dent with the temperature-salinity re- 
gions of maximum abundance of the spe- 
cies and phenotypes [the comparison is 
based on regions defined by the upper 10 
to 20 percent of the species' abundances 
and test sizes (9, 10)1. 

Bradshaw (11), in an experimental 
analysis of benthic foraminifera, also sug- 
gested that "larger test sizes within the 
range of a species, do not represent opti- 
mum conditions" [see also (12)]. These 
observations suggest that the behavior of 
25 JUNE 1976 
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Fig. 2. Temperature-salinity regions of (A) maximum abundance and (B) maximum test size (9, 
10). Abbreviation: rub, G. ruber; other abbreviations are as given in Fig. 1. 

the planktonic foraminifera is distinctly 
different from that of the benthics. 

There are three major consequences of 
the model proposed here. These con- 
sequences may be of considerable value 
in the development of quantitative pa- 
leoclimatic models based on morpholog- 
ic variations and in studies of the func- 
tional significance of shell design in plank- 
tonic foraminifera. 

First, since there are size differences 
between phenotypes of the same species 
[for example, right- and left-coiling popu- 
lations of G. truncatulinoides, and nor- 
malform, kummerform, pink, and white 
populations of G. ruber (7)], it may be de- 
sirable in determining morphologic gradi- 
ents in a species population to separate 
the species into distinct phenotypes if 
the phenotypes dominate in waters of dif- 
ferent temperatures and salinities. For 
example, is has been shown (9, 13) that 
phenotypes of a species, recognized on 
the basis of color and coiling direction, 
have statistical value in quantitative pa- 
leoecologic studies (considering the 
abundances of these phenotypes contrib- 
utes to a reduction in variance in the esti- 
mation of ocean paleotemperatures). 

Second, size variations in Pleistocene 
planktonic foraminifera may correlate di- 
rectly, vary inversely, or show no corre- 
lation with paleotemperature changes, 
depending on the optimum temperatures 
of the species analyzed. For example, in 
the Caribbean Sea today, populations of 
G. ruber and 0. universa are living 
near their optimum temperatures. Quan- 
titative estimates of paleotemperature 
changes in the Caribbean Sea (13) sug- 
gest only small changes. Consequently, 
the glacial Caribbean may still have been 

optimum for these species, and therefore 
no significant size-temperature relation- 
ship would be apparent (14). However, 
in the Caribbean Sea, populations of G. 
truncatulinoides are living in temper- 
atures and salinities below their optimum 
values. The glacial Caribbean would 
have been more favorable for this spe- 
cies, and therefore its abundance and 
test size would be expected to increase 
as the surface temperatures declined. 
There is good evidence that this is the 
case for populations of G. truncatuli- 
noides in the Caribbean (15). 

A direct relationship between size and 
abundance variations in populations of 
Globorotalia menardii, Globoquadrina 
dutertrei, and Globigerina pachyderma 
has been observed by Oba (16) in cores 
from the Indian Ocean. For these cores, 
tropical species decrease in test size 
while polar species increase in test size 
with decreasing temperature. 

Finally, although it is apparent that 
there are size differences between pheno- 
types of a species, it is not known wheth- 
er there are differences in other charac- 
teristics of shell growth. A detailed mor- 
phologic analysis of phenotypes living in 
optimum and nonoptimum environments 
could provide insight into the functional 
significance of shell forms. Such studies 
would indicate how a population re- 
sponds to environmental stress. Com- 
parisons of this type for several species 
and phenotypes from similar water 
masses may provide the basis for gener- 
ating general ecologic models of foram- 
iniferal shell growth. 

ALAN D. HECHT* 
Department of Geology, West Georgia 
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ever, recent studies show that primary 
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phorus, that are excreted by zooplank- 
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study, the uptake of excreted phos- 
phorus and carbon by algae known to 
survive grazing (4) is documented and 
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the contribution of this nutrient source to 
algal primary productivity and popu- 
lation growth is determined. 

Cells of the colonial green alga, 
Sphaerocystis schroeteri, increase in 
number when the number of grazers is 
experimentally increased (3). Colonies 
consist of cells embedded in a complex 
polysaccharide sheath. They are in- 
gested by Daphnia magna, D. galeata 
mendotae, and other natural predators, 
but more than 90 percent of the S. 
schroeteri cells are undamaged by gut 
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passage through the grazers (4). Large 
colonies are broken into smaller clusters 
of cells with the loss of a few cells and 
sheath material. They are fed on by D. 
magna at a lower rate and are assimi- 
lated less efficiently than unsheathed uni- 
cellular green algae, such as Chlamydo- 
monas reinhardi (Table 1) (6). 

During gut passage, the intact cells of 
S. schroeteri take up nutrients from the 
remains of edible algae and from Daph- 
nia metabolites. Light-dependent uptake 
and incorporation of phosphorus and car- 
bon from algal remains were examined 
by allowing D. magna to fill their guts 
with a mixture of unlabeled S. schroeteri 
and Ankistrodesmus falcatus that was 
saturation-labeled with either NaH14CO3 
or K2H33PO4 (7). The spindle-shaped 
single cells of A. falcatus are easily as- 
similated by Daphnia and are easily dis- 
tinguished from the palmelloid gelati- 
nous colonies of S. schroeteri (Fig. la). 
After 1 hour of feeding in either the light 
or the dark, animals were anesthetized, 
fixed, dehydrated, embedded, sectioned, 
and examined for the distribution of ra- 
dioactivity by using microautoradiogra- 
phy (8). 

The heavy grain density over ingested 
S. schroeteri cells (Fig. 1, b and c) docu- 
ments their uptake and incorporation of 
33P from A. falcatus remains in both the 
light and the dark. Carbon-14 is taken up 
and incorporated more in the light than 
in the dark. No incorporation of label by 
control S. schroeteri from A. falcatus 
cells in the feeding suspension was de- 
tected. The autoradiographs give a con- 
servative indication of uptake since sol- 
uble label is removed during washing and 
dehydration and only label incorporated 
into fixed, insoluble cell components re- 
mains. Phosphorus uptake in both the 
light and the dark is expected since up- 
take and storage of phosphorus is inde- 
pendent of light (9). The predominance 
of light-dependent carbon uptake, how- 
ever, suggests that it is primarily the re- 
sult of autotrophic and not heterotrophic 
processes. The accumulated phosphorus 
and carbon may be taken up in both or- 
ganic and inorganic forms. 

Uptake of phosphorus from the metab- 
olites of Daphnia was documented by 
feeding unlabeled S. schroeteri to D. 
magna that were saturation-labeled with 
133P and had empty guts (10). Feces con- 
taining intact S. schroeteri were collect- 
ed and were examined for the distribu- 
tion of radioactivity by using micro- 

passage through the grazers (4). Large 
colonies are broken into smaller clusters 
of cells with the loss of a few cells and 
sheath material. They are fed on by D. 
magna at a lower rate and are assimi- 
lated less efficiently than unsheathed uni- 
cellular green algae, such as Chlamydo- 
monas reinhardi (Table 1) (6). 

During gut passage, the intact cells of 
S. schroeteri take up nutrients from the 
remains of edible algae and from Daph- 
nia metabolites. Light-dependent uptake 
and incorporation of phosphorus and car- 
bon from algal remains were examined 
by allowing D. magna to fill their guts 
with a mixture of unlabeled S. schroeteri 
and Ankistrodesmus falcatus that was 
saturation-labeled with either NaH14CO3 
or K2H33PO4 (7). The spindle-shaped 
single cells of A. falcatus are easily as- 
similated by Daphnia and are easily dis- 
tinguished from the palmelloid gelati- 
nous colonies of S. schroeteri (Fig. la). 
After 1 hour of feeding in either the light 
or the dark, animals were anesthetized, 
fixed, dehydrated, embedded, sectioned, 
and examined for the distribution of ra- 
dioactivity by using microautoradiogra- 
phy (8). 

The heavy grain density over ingested 
S. schroeteri cells (Fig. 1, b and c) docu- 
ments their uptake and incorporation of 
33P from A. falcatus remains in both the 
light and the dark. Carbon-14 is taken up 
and incorporated more in the light than 
in the dark. No incorporation of label by 
control S. schroeteri from A. falcatus 
cells in the feeding suspension was de- 
tected. The autoradiographs give a con- 
servative indication of uptake since sol- 
uble label is removed during washing and 
dehydration and only label incorporated 
into fixed, insoluble cell components re- 
mains. Phosphorus uptake in both the 
light and the dark is expected since up- 
take and storage of phosphorus is inde- 
pendent of light (9). The predominance 
of light-dependent carbon uptake, how- 
ever, suggests that it is primarily the re- 
sult of autotrophic and not heterotrophic 
processes. The accumulated phosphorus 
and carbon may be taken up in both or- 
ganic and inorganic forms. 

Uptake of phosphorus from the metab- 
olites of Daphnia was documented by 
feeding unlabeled S. schroeteri to D. 
magna that were saturation-labeled with 
133P and had empty guts (10). Feces con- 
taining intact S. schroeteri were collect- 
ed and were examined for the distribu- 
tion of radioactivity by using micro- 
autoradiography (8). Uptake and incor- 
poration of 33P from the metabolites 
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Enhancement of Algal Growth and Productivity 

by Grazing Zooplankton 

Abstract. Colonies of the common planktonic green alga, Sphaerocystis schroe- 
teri, are only partially disrupted and assimilated by Daphnia magna, a natural preda- 
tor. The Daphnia break up the outer protective gelatinous sheath that surrounds 
Sphaerocystis colonies, but most of the algal cells emerge from Daphnia guts intact 
and in viable condition. During gut passage, these viable cells take up nutrients, 
such as phosphorus, both from algal remains and from Daphnia metabolites. This 
nutrient supply stimulates algal carbon fixation and cell division. Enhanced algal 
growth, observed after gut passage, can compensate for the minor losses to the popu- 
lation caused by grazing. Nutrients regenerated by grazers may produce the summer 
bloom of gelatinous green algae during the seasonal succession of lake phytoplank- 
ton. 
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