
7 May 1976, Volume 192, Number 4239

Microprocessors
An End User's V

Raymond E.

There is little doubt that micro-
processors are going to change the way
instruments in research laboratories and
analytical service areas are designed and
operate and how they will interact with
their operators. Within 5 years most new
equipment will be using microprocessors
to acquire analytical data, perform small
manipulations on the data base, and re-
port the results. Thus, it is important that
microprocessors be placed in a proper
perspective, especially since there is an
inclination to view them as the focal
point of an entirely new capability.

The 1960's saw the evolution of the
minicomputer from a questionable rela-
tive of the large computer system into a
strong competitor. Minicomputer sys-
tems are now capable of supporting large
numbers of high-speed peripherals. They
have an architecture that allows them to
run sophisticated software systems un-
der the control of programs called Execu-
tives and permits the user access to a
variety of high-level languages such as
Fortran, Basic, and Algol. In these lan-
guages the programmer can elicit com-
plex mathematical operations with
single-line commands. The tedious and
expensive operation of programming
minicomputers at the machine code or
assembly language level (where each ma-
chine operation must be coded into a
number that is interpreted by the comput-
er) has disappeared, except for cases
requiring speed and flexibility.

The evolution of the minicomputer
was a result of the interactions of a grow-
ing market, lowered prices, lowered man-
ufacturing costs, and the ability to put
more functional electronic components
7 MAY 1976

(such as transistors) ir
of space. The last fact
ed by a chart showii
components per squal
years since 1960 and
developments that pe
vances (see Table 1).

The impetus for so
opment was a consume
toward hand-held calc
vices provide a large a
ing power at slow sp(
key-stroke programmi
user liberation from t
higher-level language
ever, it must be realize
suitable for application
massive memory, or
to external devices.

The high-density lar
circuit (LSI) technolc
the interest of equipm<
realized that the poi
was in need of very
type equipment. Supe
tions, and other consu
devices suited to ar
ventory, and data com
ronment. Computing
were not important, 1
was a necessity. Begi
need led to the availat
circuits containing son
and capabilities of the
of a computer. These x
processors. Their inte
to a design for handlin
taining 4 or 8 bits (bina
mation, since data coi
decimal arithmetic, v
coded decimal (BCD)

SCI E NCE

ented to these word lengths (BCD is a
numbering code in which each decimal
digit is represented by 4 bits).

At that time design and construction
costs for instrument and control equip-

f~? ~ ment were soaring, and microprocessors
offered an interesting alternative to the

iew hardwired logic (logic implemented by
fixed, single-purpose circuits) currently
being used. Automobile makers, wash-

Dessy ing machine manufacturers, and process
control designers saw the micro-
processor as ideally suited to the sens-
ing, control, and reporting operations in

nto a fixed amount the units they manufactured in large
or is best illustrat- quantities.
ng the number of To the instrument maker, micro-
re inch for several processors were and are viewed as a
the technological means of reducing the design costs of
rmitted these ad- instruments and making them easier to

manufacture and simpler (but not neces-
)me of this devel- sarily cheaper) to repair. The result is
er market oriented that numerous instruments are now
ulators. These de- being sold in which data acquisition and
imount of comput- reporting is done by microprocessors. In
eeds. By allowing many units a microprocessor also con-
ing they offer the trols instrument operation, either alone
the strictures that or with operator interaction. Typical ex-
s impose. How- amples include a sophisticated electro-
d that they are not chemical instrument, x-ray fluorescence
is requiring speed, equipment, and a variety of chromato-
input/output (I/O) graphic units. The promise of complete

instrument self-calibration and opti-
ge-scale integrated mization and the potential to change in-
)gy also attracted strument function drastically by simple
ent designers, who changes in the operating program has
int-of-sale market been voiced. These capabilities, how-
simple computer- ever, have yet to be demonstrated.
rmarkets, gas sta- The availability of microprocessors
imer areas needed has excited much interest in the hobby
n accounting, in- and scientific realm because of the sug-
imunications envi- gestion that they provide cheap comput-
power and speed er power and will give minicomputer ca-
but I/O capability pabilities at hand-held calculator prices.
nning in 1970 this But microprocessors vary in the func-
bility of integrated tions they perform easily and effectively,
ne of the elements depending on their architecture-much
central processor more so than do the spectrum of mini-

vere termed micro- computers available. There are serious
nded markets led pitfalls for the novice who mismatches
g data words con- his application and his microprocessor
try digits) of infor- solution.

. .
mmunications and
vhich use binary
notation, are ori-

The author is professor of chemistry at Virginia
Polytechnic Institute and State University, Blacks-
burg 24061.

511

Because of a lack of knowledge of
computer operation, and particularly of
software generation, the boundaries are
confused between the two areas micro-
processors will affect most drastically.
On the one hand are applications in
which control is of utmost importance
and the limited vocabulary (instruction
set) and computing power entailed by an
8-bit word is of no importance-the con-
troller area. This area is in an extreme
state of flux, and will remain so until
production economies and competition
can no longer lead to price reductions.
On the other hand, during the next 2
years high-level minicomputer capabili-
ties will be attained with sophisticated
microprocessors. In the interim in-
expensive microprocessor-based mini-
computers will be attractive to those
wanting computing power and speed for
systems that will not be required to ex-
pand indefinitely in size and power-the
stand-alone computer area. Both ven-
dors and consumers have confused these

Table 1. Number of functional electronic
components per square inch of space for five
dates between 1960 and 1974.

Compo-
Year nents per Technological

square development
inch

1960 4 Discrete elements (trans-
istors, resistors)

1962 40 Integrated circuits
1965 400 Medium-scale integrated

circuits
1969 40,000 Large-scale integrated

circuits
1974 400,000 High-density large-scale

integrated circuits

two areas either
understanding.

by intent or by lack of

The root of the problem is that al-
though new techniques are not being in-
troduced with this technology-we are
not doing anything new, we are doing it
in a different way-the devices do re-
quire something most scientists do not

Fig. 1. Microprocessor chips: the Intel 8008 and the Intersil L$I version of the
Equipment Corp, PDP 8 computer.

MICROCOMPUTER INTERFACING
ELEMENTS

/ [REOUFST I

Fig. 2. A basic microcomputer and interfacing elements.

512

fully understand or appreciate, software.
To perform any task, microprocessors
must be programmed. And the program
must take cognizance of how data are
collected, how rapidly they must be ac-
quired, and in what ways they must be
manipulated. All of this takes place in
the digital environment and involves
mathematical and logical operations
which must currently be invoked by pro-
grammed instructions in assembly lan-
guage or machine language. Program gen-
eration at this level is tedious, time con-
suming, and costly under the best of
conditions, let alone in the environment
surrounding most microprocessors. To
utilize a microprocessor intended for the
controller area in a task requiring one
oriented to the computer realm is to in-
vite software catastrophe. To use a mi-
croprocessor that is ideal as a stand-
alone computer in the control environ-
ment is financially unsound.

It is my purpose in this article to pre-
sent sufficient background philosophy,
language, and examples that an inter-
ested user can make his own decision
properly. The article is based on the
conservative application principles that
an instrument automation research
group has developed through extended
experience with both minicomputers and
microprocessors.

Current Microprocessor Design

Let us examine some typical micro-
processors currently being vended. This
will provide a real-world framework
for introducing the jargon and philoso-
phy of the area. Four separate proces-
sors will be discussed, each one more
complex and powerful than its predeces-
sor. Although many microprocessors are
advertised, relatively few are easily avail-
able in unit quantities to the interested
end user. The examples given here were
chosen with such availability in mind.

A microprocessor is defined, for the
purpose of this article, as a set of one to
four integrated circuit chips, based on
LSI technology, which will provide the
functions characteristic of the central
processing unit (CPU) of a. computer
(Fig. 1). To convert a CPU into a useful
computer the first step is to surround it
with memory in which programs and
data can be stored. Memory may be of
the type where information can be both
stored (written) and retrieved (read) in a
random manner; this is called random
access memory (RAM) or read/write
memory. Where only executing pro-
grams are involved, read only memory
(ROM) may be used (Fig. 2). Also

SCIENCE, VOL. 192

needed are circuits to perform the tasks
of (i) selecting a device for activation
(device decoder), (ii) selecting a function
the device is to perform (function control
lines), and (iii) accepting and acknowl-
edging interruptions (interrupt request
and acknowledge lines). These aspects
will be discussed later.

The CPU must have a way, or ways,
of addressing memory to fetch the next
instruction for execution, or fetch the
piece of data for manipulation. The meth-
ods by which this can be accomplished
are classed as memory addressing. As
data are manipulated they will have to be
stored in registers in the CPU. If arith-
metic or logical operations are required,
special registers to handle such tasks are
needed, and these are called accumula-
tors.

Finally, it is useful to have some

simple means of establishing certain
facts about the result of operations just
performed in the accumulator-for ex-
ample, the addition of two numbers.
Such information is stored in 1-bit (yes,
no) registers called flags, as indicated by
the following examples.

Has a zero been left in the accumulator?
Zero flag: (1,0)

Is the answer negative?
Sign flag: (1,0)

Has a carry occurred?
Carry flag: (1, 0)

Has an overflow occurred?
Overflow flag: (1,0)

(Overflow occurs when two positive
numbers summed together give a result
that is considered negative by the CPU.)

All that remains is to have some means
of starting our computer up and con-
trolling the flow of the program. This is
done by setting up a register called the
program counter, which contains the ad-
dress (number indicating a specific loca-
tion in CPU memory) of the first execut-
able instruction, and then performing the
fetch operation. At this point the pro-
gram counter is set to point to the next
executable instruction in memory; the
program counter is an arrow that always
points to the next step in the program.

These features are shown in Fig. 3 for
the Intel 8080 CPU. This CPU has a
single accumulator in which arithmetic
and logic operations can be performed.
The word length for this processor is 8
bits. Data having a range of 0 to 255 in
decimal notation can be accommodated.
However, 8-bit-wide instructions do not
permit a highly involved mathematics
and control language. The situation is
equivalent to limiting your own vocabu-
lary to 8-letter words. It is also evident
7 MAY 1976

8 DATA BITS IN/OUT 16 ADDRESS BITS

Fig. 3. Architecture of the Intel 8080 CPU.

that since each memory address must be
a unique number, 8 bits of information
could uniquely identify only 256 ad-
dresses. Therefore two 8-bit-wide regis-
ters in the CPU are used to form a 16-bit-
wide pointer-to-memory, thus allowing
the CPU to address up to 64 kilobytes of
memory (a kilobyte is 1024 words, each 8
bits wide). The operation of accessing an
8-bit data word from memory requires
the following operations.

1) Load pointer-to-memory with high
8 bits of address.

2) Load pointer-to-memory with low 8
bits of address. These numbers must be
part of the executing program.

3) Perform fetch from memory at the
location where pointer-to-memory is set
and put data into accumulator.

The Intel 8080 CPU also has four 8-bit-
wide registers that can temporarily store
data. These can operate independently
as R1, R2, R3, and R4. A limited set of
operations treat these as 16-bit-wide reg-
ister pairs, (R1, R2) and (R3, R4). Zero,
negative, and carry flags are provided to
ascertain the result of arithmetic and log-
ic operations that occur in the accumula-
tor. As in most microprocessors, these
consist of addition, subtraction, in-
crement, decrement, comparison, and
the simpler logic operations "and,"
"or," and "exclusive or."

The last feature of the hardware
shown, the stack pointer, is associated
with the fact that most operations in the
real world are discontinuous. In daily
life, as you are interrupted by a visitor
while filling out a form, the interrupted
task will be put aside in a mental stack
where it can be picked up at a later time.
While you are taking care of the visitor
the telephone rings, and the visitor's
problem is also placed in the stack until
you hang up the telephone. Then you can
go back to the visitor's problem at the
point where you left him, and when he

leaves you can go back to the paper
work.

A computer can be designed to oper-
ate in the same way, and the program
counter is the key to the whole opera-
tion. A program can be interrupted in
several ways. For example, if a software
request is made to jump to an area of

memory where you can calculate a com-
monly used function (such as log x), and
then return when done to the executing
program, you jump to subroutine. Or, to
service a request by an external device
for information and then return when
done to the executing program, you inter-

rupt. Each time this occurs, if you can
store the program counter and the flags,
as well as the contents of the accumula-
tor and all registers, in some sort of stack
for retrieval at a later date, a satisfactory
operation will be assured. After each
such interruption the material stored on
the stack will be popped off and the
program counter, flags, accumulator, and

registers restored to where they were
at the time the interruption occurred.

If all of this material is stored in memo-

ry the length of the stack can be unlimit-
ed, and many nested interruptions can be
serviced. The function of the stack point-
er is to keep track of the last information
placed on the stack. When the current
interrupting task is serviced the stack
pointer allows the program to restore the
CPU for the next shelved task, and the
stack pointer is moved to show the loca-
tion of the information associated with
any previously interrupted operations. It
should be noted that the stack operates
as a first-in, last-out device, in the sense
that as many successive interruptions
occur the first thing placed in the stack is
the last thing removed.

Two other features of the Intel 8080 re-
quire comment in order to set the stage
for the discussion of the other proces-
sors. Since the restrictions on memory
access imposed by the use of a pointer-
to-memory register are severe, a means
of loading constants and other numbers
into the registers quickly and convenient-
ly is provided. Rather than having to
load the pointer-to-memory register and
then execute the fetch, the CPU has the
ability to address memory relative to the
current value in the program counter.
The concept involves loading the register
with the contents of memory pointed to
by the program counter, which fetches
the contents of the memory location im-
mediately after the location in which the
executing instruction is found. This par-
ticular form of program counter relative
addressing is called immediate mode ad-
dressing.

The second feature involves the fact
513

ACCUMULATOR 0
REGISTER I : REGISTER 2
REGISTER 3 : REGISTER 4

POINTER to: MEMORY

STACK POINTER
PROGRAM COUNTER

tZ NC--

Y~~~,

that most computers manipulate num-
bers in purely binary fashion. The out-
side world often manipulates numbers in
a decimal format, coded in binary, or
BCD.

The Intel 8080 was originally designed
for the point-of-sale market, and it does
have the capability of taking two 8-bit
numbers, each representing two BCD
digits, adding them, and correcting the
result to proper BCD notation. This is
termed BCD-decimal adjust.

Application 1

A common automation task in the psy-
chology laboratory is to provide a set of
cue signals to a test animal, and reward
correct responses with food. For ex-
ample, a specific light, or a certain se-
quence of lights, being turned on should
elicite a response that consists of de-
pressing a particular microswitch. These
functions are easily activated and sensed
by an Intel 8080 processor. Stimulus and
response data, at this level, require little
mathematics. Equipped with an appropri-
ate electromechanical interface, the mi-
croprocessor can produce the final data
in a test on punched paper tape for sub-
mission to a larger computer for statisti-
cal analysis.

Very simple programs can calculate
the digital numbers necessary to gener-
ate the cue signals, and these can be out-

put by the processor. Most vendors now
provide an interface board that will out-
put such digital signals on command; for
example: 1, light on; 0, light off (see
latches in Fig. 2). Normally, all that
needs to be added is driver circuitry to
provide the voltages and currents neces-
sary to activate the external devices. In-
put of information from microswitches
involves digital information-Is it open
or closed, 1 or 0?-and can be accom-
plished with vendor-supplied digital in-
put interface boards (see gates in Fig. 2).

The fact that the stimulus and re-
sponse pattern can be altered by changes
in the software (operating program) rath-
er than by hardware changes is an attrac-
tive one. Most laboratory scientists will
be more attracted to learning the rudi-
ments of programming than to acquiring
expert knowledge in electronics. How-
ever, with microprocessors the program-
ming language will be machine or assem-
bly code.

At this point it is necessary to bring up
the concept of analog and digital data. In
the example above the input and output
data are in digital form-all conditions
can be represented by an appropriate se-
ries of l's and 0's. The digital world
comes in discrete steps, like integral
numbers. Yet the world we live in is com-
posed largely of signals in the analog do-
main which have an infinite number of al-
lowed states; witness the positions al-
lowed on the meter in most voltmeters.

A computer can consume only digital
data. For this reason there must be a
mechanism to convert analog informa-
tion, which originates in most of our ana-
lytical equipment, into digital data. This
involves analog-to-digital converters
(ADC) (Fig. 4). On the other hand, after
a computer has digested the input data
and evaluated them on the basis of pro-
grams it contains, it is often necessary
for it to communicate with the outside
world. If this outside world is an analog
one (like oscilloscopes and plotters) it is
necessary to convert a string of digital
bits into an analog signal. Digital-to-ana-
log converters (DAC) perform this task.
These more complex automation tech-
niques are used in the application dis-
cussed next.

Application 2

In a biological monitoring system, fish
are held in flow-through tubes and are
subjected to input streams with varying
amounts of contamination (Fig. 5). The
respiration rate and "cough" rate can be
ascertained by monitoring the inhalation-
exhalation cycle with a pressure trans-
ducer. The output of the transducer is
converted to digital data by an ADC.
Peaks, valleys, and intensities are de-
tected by means of software. The fre-
quency of peaks and valleys provides res-
piration rate data, and intensities above a

Fig. 4. An analog-to-digital and digital-to-
analog conversion experiment.

CLOCK

XUUUJ'"nL_I_

SCIENCE, VOL. 192 514

certain value are associated with cough
reflexes. These processes involve taking
a derivative of incoming data to detect
maximums and minimums. This is easily
accomplished by taking the differences
between two successive digital measure-
ments and comparing the value with pre-
vious and future difference values. The
air volumes involved are determined by
integrating the incoming digital data,
which requires summation of the data
over the respiration cycle.

For the method to be economical and
statistically valid, it is usually necessary
to monitor many fish on a round-robin
basis. For example, 15 fish might be in-
volved in the study and it might be de-
sired to sample each fish for 1 minute, ev-
ery 15 minutes. The sampling rate during
one measuring cycle has to be 120 points
per second. A real-time clock (one tick-
ing independently of the computer) can
interrupt the computer at line fre-
quencies (60 or 120 hertz) and the com-
puter can use this information to contin-
uously update multiple registers so that it
can keep track of time (see Fig. 4).

Analog-to-digital converters are avail-
able which can digitize the data in 10 to
100 ,tsec, and the data may then be input
by means of digital input interface mod-
ules. Because of the mathematics and
data storage required, it is desirable to
have a machine with multiple accumula-
tors and the ability to store data easily in
arrays (one array per fish) giving respira-
tion and cough data as a function of time.
Reports would consist of typed forms
produced every hour showing the time,
fish number, respiration rate, and cough
rate for the four quarter-hour periods,
and the average.

The Motorola M6800 (Fig. 6) is a mi-
croprocessor that has two accumulators,
a stack pointer, and the necessary pro-
gram counter and flags. In addition to the
standard zero, negative, and carry flags,
it has an overflow flag. Most important,
it has an index register, which makes ar-
ray handling simple. In handling an array
it is necessary to be able to use the base
address (starting address of the array)
and a displacement (how far down the ar-
ray the desired element is) to calculate
the absolute address (exact location in
memory) of the element needed. An in-
dex register loaded with the base address
is used for this purpose as follows (small
capital letters indicate instructions given
by the operator).

FIRST: CALCULATE RELATIVE LOCA-
TION ELEMENT (DISPLACEMENT)

THEN: FETCH FROM MEMORY BY CAL-
CULATING [(DISPLACEMENT) + (VALUE
IN INDEX REGISTER)].

7 MAY 1976

VIRGINIA TECH REMOTE INDUSTRIAL
SITE

Fig. 5. A pollution monitoring system. [Courtesy of J. Cairns, Center for Environmental Studies,
Virginia Polytechnic Institute and State University]

The value in the index register is not
changed, and the CPU has another regis-
ter, invisible or transparent to the user,
in which the summed absolute address is
entered to perform the correct fetch. It
works just like the pointer-to-memory in
the Intel 8080; indeed, the normal mode
of addressing on the 8080 is index ad-
dressing with zero displacement. The
Motorola M6800 can accept dis-
placements of up to 128 places. It can al-
so handle program counter relative ad-
dressing in a very sophisticated manner
in comparison to the Intel 8080.

Mathematics

Most people employ a computer to per-
form calculations rapidly and accurately.
Yet how the computer handles a mathe-
matical operation determines the time re-
quired to perform it. This is not under-
stood by the average user. The fact that
an 8-bit-wide data word will only ac-
commodate a range of integral values
from 0 to 255 has been mentioned. It is
possible in 8-bit processors to handle
numbers in register pairs, and to think of
data words 16 bits wide, accommodating
a span from 0 to 65,536 (64 kilobytes).
However, since only the accumulator
register can perform mathematics in the
CPU's mentioned, adding two 16-bit
numbers (double precision in this ma-
chine) requires considerable juggling of
the 8-bit bytes comprising each 16-bit
word. If the numbers are in memory, as
is usually the case, the number of opera-

tions required make this an extremely
slow process.

An alternate notation, which will in-
crease the range of numbers that can be
handled, is like the scientific or floating
notation commonly used. A number can
be stored in 2 bytes (16 bits) in the fol-
lowing manner.

+ exp fraction
= number =

? .nnnnnnnnnn x 2 nnn
The range of permissible numbers can ex-
tend from

.17778 x 2178(- 32,000)
to

.l0008 x 2-208(_ .00001)

a dynamic range of about 3 x 109.
The ability to handle larger ranges and

fractional numbers has been achieved.
The price has been paid in lower resolu-
tion-only 10 bits for the fractional repre-
sentation in floating point (1/1,000) but 16
bits in the classical integer representa-
tion (1/64,000). To increase the pre-
cision, more bits are needed in the repre-
sentation of the number. Typical com-
promises involve 8 bits of exponent and
16 bits of fraction, including a bit to rep-
resent sign (1 = -; 0 +).

In an 8-bit machine the handling of
floating numbers is time- and space-con-
suming. The program (software) neces-
sary to support conversions from integer
format to floating point format, to sup-
port the mathematical functions of addi-
tion, subtraction, multiplication, and di-
vision, or to support any extended func-

515

tions (logarithm, sine, and so forth) is
long. Typically, 1500 bytes for four-func-
tion arithmetic and 3000 bytes for simple
extended functions are required.

The scientist should be aware that al-
though he can integrate, take logarithms,
and so forth directly, the computer must
perform all transcendental functions by
approximation methods. In calculators
this is done in hardware, and the times in-
volved are often hundreds of millisec-
onds. In computers with minimal config-
uration this must be done by software.
Typical times for minicomputer systems
are 1 to 10 msec. For microprocessors
this time must be multiplied by a factor
of 2 to 10. Both the execution time of a
code and the cost of writing that code
must be carefully evaluated.

It should be noted that the four proces-
sors discussed in this article, if purchased
as operating or near-operating systems,
would each cost $1600 + 20 percent
in a configuration with 8 kilobytes of
memory, terminal interface (serial I/O),
and parallel interface (digital I/O). Price
considerations might encourage a user in-

tending to build 500 units to employ a
less expensive CPU, despite the extra
software costs, since he can write off pro-
gram development costs over the entire
production run. A different set of finan-
cial factors is involved when only one or
two automated units are being consid-
ered. Anything that will reduce software
preparation costs is vital. It is for this rea-
son that a careful analysis of your prob-
lem is important in matching CPU speci-
fications to your needs. With this in
mind, a more complex problem is exam-
ined next.

Application 3

The typical amino acid analzyer is a

system ideally suited for automation by
microprocessors. In operation a number
of valves must be controlled by the pro-
cessor to change the eluting buffer in
both concentration and composition.
Usually absorbance at several wave-
lengths is used to detect the eluting
peaks. As the data are received by the

computer they must be processed to re-
ject information below a selected thresh-
old value. When a peak is detected, rath-
er sophisticated mathematical operations
must be applied in real time. A running
weighted digital filter is applied to the
data to reduce noise. First-derivative
techniques are employed to detect maxi-
mums and widths at half-height. Second-
derivative techniques are often used to
detect and help characterize shoulders.

516

8 DATA BITS IN/OUT 16 ADDRESS BITS

Fig. 6. Architecture of the Motorola M6800
CPU.

Because of ammonia bleed it is often nec-
essary to accommodate baselines that
drift and to subtract out plateaus.

In addition, there is no point in auto-
mating unless the unit is programmed to
identify materials by the time window in
which they elute, and calculate from cali-
bration factors the concentration of each
amino acid. This requires the system to
be capable of accepting a command to
calibrate, followed by a list of amino
acids in the standard and their known
concentrations. The amino acids are en-
tered in the order in which they will be
eluted from the column. As the sample is
analyzed, time windows are calculated
and response factors determined from
the known concentrations and observed
absorptivities. These constants are
stored as arrays for use when an un-
known is processed.

This requires a processor with good
memory addressing capabilities, multiple
accumulators, and a 16-bit data word to
accommodate the mathematical opera-
tions required. Arithmetic capabilities

16 DATA BITS IN/OUT 16 ADDRESS BITS

Fig. 7. Architecture of the National Semicon-
ductor IMP-16 CPU.

available in hardware will be helpful.
The IMP-16 series (Fig. 7) of the Na-

tional Semiconductor Corp. has four ac-
cumulators. Two of these (AC2 and
AC3) may be used as index registers, al-
lowing "simultaneous" access to two ar-
rays. The remaining accumulators can be
used for the typical mathematical opera-
tions.

The IMP-16 is a microcoded CPU.
This means that a special decoding ele-
ment capable of handling very long
"command" words is present. Being
longer, these commands can elicit quite
complex operations with a single instruc-
tion. It is possible with microcode to pro-
vide the IMP-16 with the capability of im-
plementing special instructions to per-
form double precision (32 bits on this
machine) integer arithmetic (addition,
subtraction, multiplication, and divi-
sion). The two 16-bit numbers involved
are placed in the ACO and AC registers,
and the microcode executed. The results
are left in ACO and AC1. This speeds up
the mathematical operations consid-
erably in comparison to software integral
arithmetic. Numbers to 4.3 x 109 are ac-
commodated.

The IMP-16 has the ability to address
memory relative to the program counter.
This can be viewed simply as another op-
eration in which a displacement with ref-
erence to a base address is used to calcu-
late memory address, but where the pro-
gram counter provides the base address.
This is a logical extension of the immedi-
ate addressing scheme described for
the Intel 8080, where only zero dis-

placements were allowed. However, in
the IMP-16 addresses +128 bytes from
the program counter can be accessed.
All of these schemes are attempts to pro-
vide methods by which fewer bits and
less time are needed to access memory in
a program.

The IMP-16 also has indirect address-
ing. Instead of a direct, relative, or in-
dexed operation giving the address in

memory required (pointer-to-memory),
the indirect operation gives the address
of the address in memory required (point-
er-to-a-pointer-to-memory). This feature
is valuable because the stack in the IMP-
16 is a hardware stack limited to 16
words. This makes access to materials
on the stack rapid, compared to memory
fetches, but one cannot build long arrays
in the stack without data "falling
through" (more than 16 words put in the
stack) and being lost.

The indirect method allows a pointer
to be set up in a memory location and
then used to create an array in another

part of memory. Unfortunately it is the

SCIENCE, VOL. 192

ACCUMULATOR 0
ACCUMULATOR I

INDEX REGISTER
STACK POINTER

I PROGRAM COUNTER
IZN V C

I I . . A -1 -- - e

ACCUMULATOR 0
ACCUMULATOR I
ACCUMULATOR 2 (INDEXING)
ACCUMULATOR 3 (INDEXING)

PROGRAM COUNTER
(N Z) V C

16 WORD HARDWARE STACK
FIRST IN, LAST-OUT FILO

DOUBLE PRECISION INTEGER MATH
+,-,X,- IN MICROCODE

program's task to continuously in-
crement or decrement this pointer loca-
tion as the file is created. This resembles
the operations involved in the Intel
8080, where it was the user's job to up-
date the pointer-to-memory register in
creating a list.

Application 4

Since the lifetime of perfused biologi-
cal samples is short, it is usually neces-
sary to abstract as much information as
possible from the experiment in a short
time. Typical experiments involve nerve
or muscle preparations in which a vari-
ety of transducers are placed in a large
number of places (Fig. 4). Galvanic acti-
vation of the preparation, controlled in
intensity by the computer, can lead to a
response studied by simultaneous mea-
surement of the rate of propagation of
the electrical impulse in the nerve and
the response at the activated tissue.

Electrical, specific chemical ion, and
pressure transducers will be needed to
obtain data. These data can measure (i)
rates of electrical propagation of the stim-
uli, (ii) propagation delay areas, (iii) ion
recovery rates, and (iv) response time in
the tissue. Predictions of fatiguing rate
must be made, and closed-loop control
of the experiment may be desirable.

Sampling of data in such a system re-
quires a processor with extremely well
developed memory addressing, since
multiple arrays will be created and used.
Mathematical operations are quite so-
phisticated and require real-time execu-
tion with a fair degree of resolution. It
would probably be desirable to be able to
replay an experiment in slow motion on a
video terminal. Heretofore these opera-
tions have been the perogative of a large
minicomputer, but microprocessors are
now available with the capabilities of han-
dling the problem.

The LSI-11 (Fig. 8), manufactured by
Digital Equipment Corp., is a micro-
processor chip set that emulates the oper-
ations (instruction set) of Digital Equip-
ment's PDP 11/40 computer. It is thus a
CPU that falls in the gray area between
microcomputers and minicomputers.
With six accumulators, any and all of
which can be used as index registers or
stack pointers, the LSI- 1 has remark-
able power. It has all the forms of ad-
dressing previously described: direct, in-
direct, index, and relative. In addition, it
has autoincrement and autodecrement
features when indirect addressing is
used. In this mode the CPU automatical-
ly steps the pointer forward (increment)
7 MAY 1976

Table 2. Memory and time needed to add two
16-bit numbers.

Microprocessor Memory Time (bits) (/xsec)

Intel 8080 120 46
Motorola M6800 104 35
National Semiconductor

IMP-16 80 28
Digital Equipment

Corp. LSI-11 48 11.7

or backward (decrement) through a se-
quential operation. This removes the
need for the program to update pointer-
to-memory information as contiguous
files are being created. It also has micro-
coded integer multiplication and division
as well as two-word floating arithmetic
addition, subtractions, multiplication,
and division. The latter mode will ac-
commodate a range of + 10-+8. Typical
time for floating division is 150 micro-
seconds.

Discussion

It is appropriate at this point to sum up
the capabilities of the various processors
by comparing the relative amount of
memory storage (for program) and time
that would be needed to execute the addi-
tion of two 16-bit words (see Table 2).

For 32-bit integer multiplication or di-
vision the IMP-16 will take 2.7 times
more time than the LSI-11. Although
equivalent benchmarks are hard to find,
a 3-byte software floating addition takes
2.5 msec on the 8080, compared to 50
/sec for a 4-byte firmware floating addi-
tion on the LSI-I1 -a factor of 50. Be-
fore attempting to use this information
alone to focus on the processor of
choice, let us look at software.

ACCUMULATOR 0
ACCUMULATOR I
ACCUMULATOR 2
ACCUMULATOR 3
ACCUMULATOR 4
ACCUMULATOR 5

STACK POINTER
PROGRAM COUNTER

Fig. 8. Acitu oh N v c
DOUBLE PRECISION X,-
TWO WORD FLOATING +,-, X,-
IN MICROCODE
ODT IN MICROCODE

16 DATA BITS IN/OUT 16 ADDRESS BITS

Fig. 8. Architecture of the Digital Equipment
Corp. LSI-11 CPU.

The generation of software for micro-
processors is, and will continue to be,
the major problem. The CPU can accept
code only in a language made up of 1's
and 0's-machine code. Humans
"speak" arithmetic, algebra, and words,
but not l's and 0's. It is possible to
"hand code" from an instruction card in
machine code. In the simpler processors
like the Intel 8080, it is possible to code
programs of less than 500 bytes in this
way-if the user has had considerable ex-
perience. As the programs become long-
er, mistakes in address calculation and
the need to insert forgotten code become
insufferable problems. In more complex
machines, particularly where displace-
ment values must be calculated, the
frustration point comes even earlier.

It is possible to operate in a mnemonic
language, with abbreviated symbols to
assist humans to remember instruction
codes. In this method the user writes
source code (a language from which an-
other language is to be derived), using an
editor which allows for corrections, in-
sertions, and deletions. This source code
can be stored temporarily on paper tape,
cassette, or high-speed rotating memory
such as floppy disks. The latter is the on-
ly really satisfactory solution because of
problems of handling, speed, and error
rate in the other devices. The source
code is then submitted to another pro-
gram called an assembler, which does all
the address calculations and converts the
words into instructions that can be han-
dled by the machine. Unfortunately, add-
ing the software to support the editor, as-
sembler, and disk storage and retrieval
to the bulk storage hardware increases
the cost of a microprocessor to a point
where it is equal to or greater than that of
some minicomputers. Where large num-
bers of units will be manufactured in-
house or for resale this can still be eco-
nomical, but for the one-of-a-kind devel-
oper it is a disaster. It would be better to
start off with a well-known mini-
computer which has a large amount of
available software.

Most laboratories are using cross-as-
semblers (assemblers running on one
machine that produce machine code for
another) which run on larger minicom-
puters or through time-sharing facili-
ties. These are available for most of
the large-volume microprocessors; how-
ever, a careful study should be made be-
fore assuming that a cross-assembler is
indeed available for your processor, and
that it is "bug-free."

Finally, several companies are begin-
ning to offer higher-level languages such
as Basic or a subset of PL-1. The ability

517

to handle real-time functions is lacking in
the former (just as real-time Basic lacks
many I/O features). Both produce code
that is inefficient in its use of memory
and therefore costs time and money to
execute. This will not be a serious factor
for the one-of-a-kind developer. He
should not be stressing the CPU, and a
few hundred dollars in memory will eas-
ily offset the price of coding, which costs
about $10 per line. At this point in micro-
processor development high-level lan-
guages are not universally available or
properly developed, and they may not be
available for the CPU that meets the
hardware and software characteristics
needed for your application. At least
three vendors are making micro-
processors that use the same machine
code as an existing minicomputer. Thus,
software at any level can be developed
on a host minicomputer and "down-
loaded" without code conversion. This
is one elegant feature of the LSI-11
which is a mini-based microprocessor.

It is vital that the prospective micro-
processor user be aware that hardware
and software documentation will be far
less extensive than similar material pro-
vided with minicomputers. Micro-
processor vendors assume a certain level
of sophistication in their end users and
provide accordingly. Microprocessor
hardware may be purchased in the form
of CPU chip sets, but this is not recom-
mended for the average scientist. Nor is
purchasing the CPU card that contains
most of the decoding and I/O control ele-
ments. A complete system with some
software support is most practical. For
the novice, or even those with consid-
erable experience with high-level lan-
guages, it is essential that the machine
have a bootstrap (the program that loads

subsequent programs) and a rather so-
phisticated debug program. The latter
permits the user to examine and alter the
content of memory addresses in machine
code. Programs can be initiated and in
some cases run in single-step mode or
with set breakpoints. These are the only
feasible ways to find errors. Diagnostic
software that detects and reports hard-
ware malfunctions is essential, since few
microprocessors sold have field or facto-
ry repair service.

Although high-level executives and op-
erating systems (a collection of programs
that aid in programming) are advertised,
the state of the art is still primitive. Since
much of the information published in this

area for minicomputers is often mislead-
ing, it is doubly important to establish
the reliability of software claims in the
microprocessor area.

The best way to judge your chances
for success in the plunge into micro-
processors is to see if the prospective
vendor or you can understand and an-
swer the following questions about the
system of interest to you.

1) Can the firmware bootstrap and de-
bugging program accept terminals with
mark, space, odd, or even parity?

2) Does the debugging aid permit the
saving of all registers and flags during ex-
ecution of breakpoints?

3) Are the binary-formatted tapes pro-
vided in absolute format, or is a linking
loader needed? If one is provided, how
much memory is required to run it?

4) Is there a software interrupt disable
command? If the interrupt priority sched-
uling is in hardware, does it arbitrate cor-
rectly? If it is in software, does masking-
off capability exist in the interface hard-
ware?

5) What is the resolution of the float-
ing point package? (Some 24-bit floating
point routines only give five-digit resolu-
tion, compared to eight digits on hand-
held calculators.)

6) If an operating system is supported,
are the device handlers written so that
they may be added and deleted easily to
reconfigure the system-or are they writ-
ten in in-line code, making alteration al-
most impossible?

7) If high-level languages are support-
ed, how long a user program can be run,
and how many user-assigned symbols
are permitted in the normal memory con-
figuration?

8) What is the bit drop-rate of the pe-
ripherals provided?

9) Does the vendor provide ROM
"burning" facilities so that programs
may be loaded into nonvolatile memory
for long-term use?

10) Who is responsible for issuing re-
fresh commands in memories that are
dynamic? And does this process inter-
fere with the operation of other periph-
erals?

All of these above questions have been
constructed from actual case histories in
microprocessor applications. The prob-
lems involved were overcome, but at
considerable cost in time and money. If
the vendor or you cannot respond to
these questions, you are not ready to use
microprocessors. Microprocessors offer

an inexpensive solution to the hardware
'problems encountered in laboratories,
but they may engender a manpower ex-
penditure in programming and hardware
setup that is prohibitive.

Developments in this area have been
breathtaking in the last 3 years, but a
technological plateau has been reached
that I believe will be maintained for sev-
eral years. The main thrust during this
period will be toward lower cost rather
than an increase in power that is evident
to the end user. One can then expect the
introduction of new capabilities in hard-
ware, mathematics and statistics pack-
ages, memory methodology, and substi-
tutes for rotating bulk-storage devices.
Large-scale integrated circuit chips will
ease the interfacing task by providing
flexible, inexpensive I/O control, but
they will usually be specific to particular
CPU's and peripherals. A supermarket
or erector set philosophy in micro-
computer system design is still a long
way off. Some think it will never come.

By this point, it is hoped that the read-
er will have enough understanding to ana-
lyze the potential application of micro-
processors to his tasks. In processes
where mathematics and memory access-
ing are minimal and the programs are of a
length suitable for hand-coding, the Intel
8080, with its simple-to-understand in-
struction set, is ideal. Where speed and
language sophistication are important,
CPU's like the Motorola M6800 are appli-
cable. Where speed, mathematical pow-
er, and instruction set versatility are im-
portant and expansion is envisaged, look
to mini-based microcomputers like the
LSI-11.

It is strongly urged that your first in-
troduction to computers not be micro-
processors. The learning curve is a steep
one that is best approached by some ex-
perience on gentler slopes and some pre-
vious exposure to such factors as the
cost of program development, problems
with the mathematics package, and run-
ning out of real time is desirable.

Notes

1. Suggested further reading: A. Osborne, An In-
troduction to Microcomputers (Adam Osborne
and Assoc., Inc., Berkeley, Calif., 1975); R. H.
Cushman "Second annual microprocessor direc-
tory," EDN 20, 42 (20 November 1975); R. E.
Dessy, P. J. Van Vuuren, J. A. Titus, Anal.
Chem. 46, 917A(1974); ibid., p. 1055A.

2. This article has been developed with the aid of E.
Fiorino, J. Fiorino, P. Hallman, J. Leone, I.
Starling, D. Binkley, D. Hooley, C. Knipe, W.
Nunn, D. Shearer, M. Starling, and H. Wohltjen.
These people compose the Chemistry Depart-
ment's Instrument Design and Automation Re-
search Group.

SCIENCE, VOL. 192 518

