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Microprocessors 
An End User's V 

Raymond E. 

There is little doubt that micro- 
processors are going to change the way 
instruments in research laboratories and 
analytical service areas are designed and 
operate and how they will interact with 
their operators. Within 5 years most new 
equipment will be using microprocessors 
to acquire analytical data, perform small 
manipulations on the data base, and re- 
port the results. Thus, it is important that 
microprocessors be placed in a proper 
perspective, especially since there is an 
inclination to view them as the focal 
point of an entirely new capability. 

The 1960's saw the evolution of the 
minicomputer from a questionable rela- 
tive of the large computer system into a 
strong competitor. Minicomputer sys- 
tems are now capable of supporting large 
numbers of high-speed peripherals. They 
have an architecture that allows them to 
run sophisticated software systems un- 
der the control of programs called Execu- 
tives and permits the user access to a 
variety of high-level languages such as 
Fortran, Basic, and Algol. In these lan- 
guages the programmer can elicit com- 
plex mathematical operations with 
single-line commands. The tedious and 
expensive operation of programming 
minicomputers at the machine code or 
assembly language level (where each ma- 
chine operation must be coded into a 
number that is interpreted by the comput- 
er) has disappeared, except for cases 
requiring speed and flexibility. 

The evolution of the minicomputer 
was a result of the interactions of a grow- 
ing market, lowered prices, lowered man- 
ufacturing costs, and the ability to put 
more functional electronic components 
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Because of a lack of knowledge of 
computer operation, and particularly of 
software generation, the boundaries are 
confused between the two areas micro- 
processors will affect most drastically. 
On the one hand are applications in 
which control is of utmost importance 
and the limited vocabulary (instruction 
set) and computing power entailed by an 
8-bit word is of no importance-the con- 
troller area. This area is in an extreme 
state of flux, and will remain so until 
production economies and competition 
can no longer lead to price reductions. 
On the other hand, during the next 2 
years high-level minicomputer capabili- 
ties will be attained with sophisticated 
microprocessors. In the interim in- 
expensive microprocessor-based mini- 
computers will be attractive to those 
wanting computing power and speed for 
systems that will not be required to ex- 
pand indefinitely in size and power-the 
stand-alone computer area. Both ven- 
dors and consumers have confused these 

Table 1. Number of functional electronic 
components per square inch of space for five 
dates between 1960 and 1974. 

Compo- 
Year nents per Technological 

square development 
inch 

1960 4 Discrete elements (trans- 
istors, resistors) 

1962 40 Integrated circuits 
1965 400 Medium-scale integrated 

circuits 
1969 40,000 Large-scale integrated 

circuits 
1974 400,000 High-density large-scale 

integrated circuits 

two areas either 
understanding. 

by intent or by lack of 

The root of the problem is that al- 
though new techniques are not being in- 
troduced with this technology-we are 
not doing anything new, we are doing it 
in a different way-the devices do re- 
quire something most scientists do not 

Fig. 1. Microprocessor chips: the Intel 8008 and the Intersil L$I version of the 
Equipment Corp, PDP 8 computer. 

MICROCOMPUTER INTERFACING 
ELEMENTS 

/ [ REOUFST I 

Fig. 2. A basic microcomputer and interfacing elements. 
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fully understand or appreciate, software. 
To perform any task, microprocessors 
must be programmed. And the program 
must take cognizance of how data are 
collected, how rapidly they must be ac- 
quired, and in what ways they must be 
manipulated. All of this takes place in 
the digital environment and involves 
mathematical and logical operations 
which must currently be invoked by pro- 
grammed instructions in assembly lan- 
guage or machine language. Program gen- 
eration at this level is tedious, time con- 
suming, and costly under the best of 
conditions, let alone in the environment 
surrounding most microprocessors. To 
utilize a microprocessor intended for the 
controller area in a task requiring one 
oriented to the computer realm is to in- 
vite software catastrophe. To use a mi- 
croprocessor that is ideal as a stand- 
alone computer in the control environ- 
ment is financially unsound. 

It is my purpose in this article to pre- 
sent sufficient background philosophy, 
language, and examples that an inter- 
ested user can make his own decision 
properly. The article is based on the 
conservative application principles that 
an instrument automation research 
group has developed through extended 
experience with both minicomputers and 
microprocessors. 

Current Microprocessor Design 

Let us examine some typical micro- 
processors currently being vended. This 
will provide a real-world framework 
for introducing the jargon and philoso- 
phy of the area. Four separate proces- 
sors will be discussed, each one more 
complex and powerful than its predeces- 
sor. Although many microprocessors are 
advertised, relatively few are easily avail- 
able in unit quantities to the interested 
end user. The examples given here were 
chosen with such availability in mind. 

A microprocessor is defined, for the 
purpose of this article, as a set of one to 
four integrated circuit chips, based on 
LSI technology, which will provide the 
functions characteristic of the central 
processing unit (CPU) of a. computer 
(Fig. 1). To convert a CPU into a useful 
computer the first step is to surround it 
with memory in which programs and 
data can be stored. Memory may be of 
the type where information can be both 
stored (written) and retrieved (read) in a 
random manner; this is called random 
access memory (RAM) or read/write 
memory. Where only executing pro- 
grams are involved, read only memory 
(ROM) may be used (Fig. 2). Also 

SCIENCE, VOL. 192 



needed are circuits to perform the tasks 
of (i) selecting a device for activation 
(device decoder), (ii) selecting a function 
the device is to perform (function control 
lines), and (iii) accepting and acknowl- 
edging interruptions (interrupt request 
and acknowledge lines). These aspects 
will be discussed later. 

The CPU must have a way, or ways, 
of addressing memory to fetch the next 
instruction for execution, or fetch the 
piece of data for manipulation. The meth- 
ods by which this can be accomplished 
are classed as memory addressing. As 
data are manipulated they will have to be 
stored in registers in the CPU. If arith- 
metic or logical operations are required, 
special registers to handle such tasks are 
needed, and these are called accumula- 
tors. 

Finally, it is useful to have some 

simple means of establishing certain 
facts about the result of operations just 
performed in the accumulator-for ex- 
ample, the addition of two numbers. 
Such information is stored in 1-bit (yes, 
no) registers called flags, as indicated by 
the following examples. 

Has a zero been left in the accumulator? 
Zero flag: (1,0) 

Is the answer negative? 
Sign flag: (1,0) 

Has a carry occurred? 
Carry flag: (1, 0) 

Has an overflow occurred? 
Overflow flag: (1,0) 

(Overflow occurs when two positive 
numbers summed together give a result 
that is considered negative by the CPU.) 

All that remains is to have some means 
of starting our computer up and con- 
trolling the flow of the program. This is 
done by setting up a register called the 
program counter, which contains the ad- 
dress (number indicating a specific loca- 
tion in CPU memory) of the first execut- 
able instruction, and then performing the 
fetch operation. At this point the pro- 
gram counter is set to point to the next 
executable instruction in memory; the 
program counter is an arrow that always 
points to the next step in the program. 

These features are shown in Fig. 3 for 
the Intel 8080 CPU. This CPU has a 
single accumulator in which arithmetic 
and logic operations can be performed. 
The word length for this processor is 8 
bits. Data having a range of 0 to 255 in 
decimal notation can be accommodated. 
However, 8-bit-wide instructions do not 
permit a highly involved mathematics 
and control language. The situation is 
equivalent to limiting your own vocabu- 
lary to 8-letter words. It is also evident 
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8 DATA BITS IN/OUT 16 ADDRESS BITS 

Fig. 3. Architecture of the Intel 8080 CPU. 

that since each memory address must be 
a unique number, 8 bits of information 
could uniquely identify only 256 ad- 
dresses. Therefore two 8-bit-wide regis- 
ters in the CPU are used to form a 16-bit- 
wide pointer-to-memory, thus allowing 
the CPU to address up to 64 kilobytes of 
memory (a kilobyte is 1024 words, each 8 
bits wide). The operation of accessing an 
8-bit data word from memory requires 
the following operations. 

1) Load pointer-to-memory with high 
8 bits of address. 

2) Load pointer-to-memory with low 8 
bits of address. These numbers must be 
part of the executing program. 

3) Perform fetch from memory at the 
location where pointer-to-memory is set 
and put data into accumulator. 

The Intel 8080 CPU also has four 8-bit- 
wide registers that can temporarily store 
data. These can operate independently 
as R1, R2, R3, and R4. A limited set of 
operations treat these as 16-bit-wide reg- 
ister pairs, (R1, R2) and (R3, R4). Zero, 
negative, and carry flags are provided to 
ascertain the result of arithmetic and log- 
ic operations that occur in the accumula- 
tor. As in most microprocessors, these 
consist of addition, subtraction, in- 
crement, decrement, comparison, and 
the simpler logic operations "and," 
"or," and "exclusive or." 

The last feature of the hardware 
shown, the stack pointer, is associated 
with the fact that most operations in the 
real world are discontinuous. In daily 
life, as you are interrupted by a visitor 
while filling out a form, the interrupted 
task will be put aside in a mental stack 
where it can be picked up at a later time. 
While you are taking care of the visitor 
the telephone rings, and the visitor's 
problem is also placed in the stack until 
you hang up the telephone. Then you can 
go back to the visitor's problem at the 
point where you left him, and when he 

leaves you can go back to the paper 
work. 

A computer can be designed to oper- 
ate in the same way, and the program 
counter is the key to the whole opera- 
tion. A program can be interrupted in 
several ways. For example, if a software 
request is made to jump to an area of 

memory where you can calculate a com- 
monly used function (such as log x), and 
then return when done to the executing 
program, you jump to subroutine. Or, to 
service a request by an external device 
for information and then return when 
done to the executing program, you inter- 

rupt. Each time this occurs, if you can 
store the program counter and the flags, 
as well as the contents of the accumula- 
tor and all registers, in some sort of stack 
for retrieval at a later date, a satisfactory 
operation will be assured. After each 
such interruption the material stored on 
the stack will be popped off and the 
program counter, flags, accumulator, and 

registers restored to where they were 
at the time the interruption occurred. 

If all of this material is stored in memo- 

ry the length of the stack can be unlimit- 
ed, and many nested interruptions can be 
serviced. The function of the stack point- 
er is to keep track of the last information 
placed on the stack. When the current 
interrupting task is serviced the stack 
pointer allows the program to restore the 
CPU for the next shelved task, and the 
stack pointer is moved to show the loca- 
tion of the information associated with 
any previously interrupted operations. It 
should be noted that the stack operates 
as a first-in, last-out device, in the sense 
that as many successive interruptions 
occur the first thing placed in the stack is 
the last thing removed. 

Two other features of the Intel 8080 re- 
quire comment in order to set the stage 
for the discussion of the other proces- 
sors. Since the restrictions on memory 
access imposed by the use of a pointer- 
to-memory register are severe, a means 
of loading constants and other numbers 
into the registers quickly and convenient- 
ly is provided. Rather than having to 
load the pointer-to-memory register and 
then execute the fetch, the CPU has the 
ability to address memory relative to the 
current value in the program counter. 
The concept involves loading the register 
with the contents of memory pointed to 
by the program counter, which fetches 
the contents of the memory location im- 
mediately after the location in which the 
executing instruction is found. This par- 
ticular form of program counter relative 
addressing is called immediate mode ad- 
dressing. 

The second feature involves the fact 
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that most computers manipulate num- 
bers in purely binary fashion. The out- 
side world often manipulates numbers in 
a decimal format, coded in binary, or 
BCD. 

The Intel 8080 was originally designed 
for the point-of-sale market, and it does 
have the capability of taking two 8-bit 
numbers, each representing two BCD 
digits, adding them, and correcting the 
result to proper BCD notation. This is 
termed BCD-decimal adjust. 

Application 1 

A common automation task in the psy- 
chology laboratory is to provide a set of 
cue signals to a test animal, and reward 
correct responses with food. For ex- 
ample, a specific light, or a certain se- 
quence of lights, being turned on should 
elicite a response that consists of de- 
pressing a particular microswitch. These 
functions are easily activated and sensed 
by an Intel 8080 processor. Stimulus and 
response data, at this level, require little 
mathematics. Equipped with an appropri- 
ate electromechanical interface, the mi- 
croprocessor can produce the final data 
in a test on punched paper tape for sub- 
mission to a larger computer for statisti- 
cal analysis. 

Very simple programs can calculate 
the digital numbers necessary to gener- 
ate the cue signals, and these can be out- 

put by the processor. Most vendors now 
provide an interface board that will out- 
put such digital signals on command; for 
example: 1, light on; 0, light off (see 
latches in Fig. 2). Normally, all that 
needs to be added is driver circuitry to 
provide the voltages and currents neces- 
sary to activate the external devices. In- 
put of information from microswitches 
involves digital information-Is it open 
or closed, 1 or 0?-and can be accom- 
plished with vendor-supplied digital in- 
put interface boards (see gates in Fig. 2). 

The fact that the stimulus and re- 
sponse pattern can be altered by changes 
in the software (operating program) rath- 
er than by hardware changes is an attrac- 
tive one. Most laboratory scientists will 
be more attracted to learning the rudi- 
ments of programming than to acquiring 
expert knowledge in electronics. How- 
ever, with microprocessors the program- 
ming language will be machine or assem- 
bly code. 

At this point it is necessary to bring up 
the concept of analog and digital data. In 
the example above the input and output 
data are in digital form-all conditions 
can be represented by an appropriate se- 
ries of l's and 0's. The digital world 
comes in discrete steps, like integral 
numbers. Yet the world we live in is com- 
posed largely of signals in the analog do- 
main which have an infinite number of al- 
lowed states; witness the positions al- 
lowed on the meter in most voltmeters. 

A computer can consume only digital 
data. For this reason there must be a 
mechanism to convert analog informa- 
tion, which originates in most of our ana- 
lytical equipment, into digital data. This 
involves analog-to-digital converters 
(ADC) (Fig. 4). On the other hand, after 
a computer has digested the input data 
and evaluated them on the basis of pro- 
grams it contains, it is often necessary 
for it to communicate with the outside 
world. If this outside world is an analog 
one (like oscilloscopes and plotters) it is 
necessary to convert a string of digital 
bits into an analog signal. Digital-to-ana- 
log converters (DAC) perform this task. 
These more complex automation tech- 
niques are used in the application dis- 
cussed next. 

Application 2 

In a biological monitoring system, fish 
are held in flow-through tubes and are 
subjected to input streams with varying 
amounts of contamination (Fig. 5). The 
respiration rate and "cough" rate can be 
ascertained by monitoring the inhalation- 
exhalation cycle with a pressure trans- 
ducer. The output of the transducer is 
converted to digital data by an ADC. 
Peaks, valleys, and intensities are de- 
tected by means of software. The fre- 
quency of peaks and valleys provides res- 
piration rate data, and intensities above a 

Fig. 4. An analog-to-digital and digital-to- 
analog conversion experiment. 
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certain value are associated with cough 
reflexes. These processes involve taking 
a derivative of incoming data to detect 
maximums and minimums. This is easily 
accomplished by taking the differences 
between two successive digital measure- 
ments and comparing the value with pre- 
vious and future difference values. The 
air volumes involved are determined by 
integrating the incoming digital data, 
which requires summation of the data 
over the respiration cycle. 

For the method to be economical and 
statistically valid, it is usually necessary 
to monitor many fish on a round-robin 
basis. For example, 15 fish might be in- 
volved in the study and it might be de- 
sired to sample each fish for 1 minute, ev- 
ery 15 minutes. The sampling rate during 
one measuring cycle has to be 120 points 
per second. A real-time clock (one tick- 
ing independently of the computer) can 
interrupt the computer at line fre- 
quencies (60 or 120 hertz) and the com- 
puter can use this information to contin- 
uously update multiple registers so that it 
can keep track of time (see Fig. 4). 

Analog-to-digital converters are avail- 
able which can digitize the data in 10 to 
100 ,tsec, and the data may then be input 
by means of digital input interface mod- 
ules. Because of the mathematics and 
data storage required, it is desirable to 
have a machine with multiple accumula- 
tors and the ability to store data easily in 
arrays (one array per fish) giving respira- 
tion and cough data as a function of time. 
Reports would consist of typed forms 
produced every hour showing the time, 
fish number, respiration rate, and cough 
rate for the four quarter-hour periods, 
and the average. 

The Motorola M6800 (Fig. 6) is a mi- 
croprocessor that has two accumulators, 
a stack pointer, and the necessary pro- 
gram counter and flags. In addition to the 
standard zero, negative, and carry flags, 
it has an overflow flag. Most important, 
it has an index register, which makes ar- 
ray handling simple. In handling an array 
it is necessary to be able to use the base 
address (starting address of the array) 
and a displacement (how far down the ar- 
ray the desired element is) to calculate 
the absolute address (exact location in 
memory) of the element needed. An in- 
dex register loaded with the base address 
is used for this purpose as follows (small 
capital letters indicate instructions given 
by the operator). 

FIRST: CALCULATE RELATIVE LOCA- 
TION ELEMENT (DISPLACEMENT) 

THEN: FETCH FROM MEMORY BY CAL- 
CULATING [(DISPLACEMENT) + (VALUE 
IN INDEX REGISTER)]. 
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Fig. 5. A pollution monitoring system. [Courtesy of J. Cairns, Center for Environmental Studies, 
Virginia Polytechnic Institute and State University] 

The value in the index register is not 
changed, and the CPU has another regis- 
ter, invisible or transparent to the user, 
in which the summed absolute address is 
entered to perform the correct fetch. It 
works just like the pointer-to-memory in 
the Intel 8080; indeed, the normal mode 
of addressing on the 8080 is index ad- 
dressing with zero displacement. The 
Motorola M6800 can accept dis- 
placements of up to 128 places. It can al- 
so handle program counter relative ad- 
dressing in a very sophisticated manner 
in comparison to the Intel 8080. 

Mathematics 

Most people employ a computer to per- 
form calculations rapidly and accurately. 
Yet how the computer handles a mathe- 
matical operation determines the time re- 
quired to perform it. This is not under- 
stood by the average user. The fact that 
an 8-bit-wide data word will only ac- 
commodate a range of integral values 
from 0 to 255 has been mentioned. It is 
possible in 8-bit processors to handle 
numbers in register pairs, and to think of 
data words 16 bits wide, accommodating 
a span from 0 to 65,536 (64 kilobytes). 
However, since only the accumulator 
register can perform mathematics in the 
CPU's mentioned, adding two 16-bit 
numbers (double precision in this ma- 
chine) requires considerable juggling of 
the 8-bit bytes comprising each 16-bit 
word. If the numbers are in memory, as 
is usually the case, the number of opera- 

tions required make this an extremely 
slow process. 

An alternate notation, which will in- 
crease the range of numbers that can be 
handled, is like the scientific or floating 
notation commonly used. A number can 
be stored in 2 bytes (16 bits) in the fol- 
lowing manner. 

+ exp fraction 
= number = 

? .nnnnnnnnnn x 2 nnn 
The range of permissible numbers can ex- 
tend from 

.17778 x 2178(- 32,000) 
to 

.l0008 x 2-208(_ .00001) 

a dynamic range of about 3 x 109. 
The ability to handle larger ranges and 

fractional numbers has been achieved. 
The price has been paid in lower resolu- 
tion-only 10 bits for the fractional repre- 
sentation in floating point (1/1,000) but 16 
bits in the classical integer representa- 
tion (1/64,000). To increase the pre- 
cision, more bits are needed in the repre- 
sentation of the number. Typical com- 
promises involve 8 bits of exponent and 
16 bits of fraction, including a bit to rep- 
resent sign (1 = -; 0 + ). 

In an 8-bit machine the handling of 
floating numbers is time- and space-con- 
suming. The program (software) neces- 
sary to support conversions from integer 
format to floating point format, to sup- 
port the mathematical functions of addi- 
tion, subtraction, multiplication, and di- 
vision, or to support any extended func- 
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tions (logarithm, sine, and so forth) is 
long. Typically, 1500 bytes for four-func- 
tion arithmetic and 3000 bytes for simple 
extended functions are required. 

The scientist should be aware that al- 
though he can integrate, take logarithms, 
and so forth directly, the computer must 
perform all transcendental functions by 
approximation methods. In calculators 
this is done in hardware, and the times in- 
volved are often hundreds of millisec- 
onds. In computers with minimal config- 
uration this must be done by software. 
Typical times for minicomputer systems 
are 1 to 10 msec. For microprocessors 
this time must be multiplied by a factor 
of 2 to 10. Both the execution time of a 
code and the cost of writing that code 
must be carefully evaluated. 

It should be noted that the four proces- 
sors discussed in this article, if purchased 
as operating or near-operating systems, 
would each cost $1600 + 20 percent 
in a configuration with 8 kilobytes of 
memory, terminal interface (serial I/O), 
and parallel interface (digital I/O). Price 
considerations might encourage a user in- 

tending to build 500 units to employ a 
less expensive CPU, despite the extra 
software costs, since he can write off pro- 
gram development costs over the entire 
production run. A different set of finan- 
cial factors is involved when only one or 
two automated units are being consid- 
ered. Anything that will reduce software 
preparation costs is vital. It is for this rea- 
son that a careful analysis of your prob- 
lem is important in matching CPU speci- 
fications to your needs. With this in 
mind, a more complex problem is exam- 
ined next. 

Application 3 

The typical amino acid analzyer is a 

system ideally suited for automation by 
microprocessors. In operation a number 
of valves must be controlled by the pro- 
cessor to change the eluting buffer in 
both concentration and composition. 
Usually absorbance at several wave- 
lengths is used to detect the eluting 
peaks. As the data are received by the 

computer they must be processed to re- 
ject information below a selected thresh- 
old value. When a peak is detected, rath- 
er sophisticated mathematical operations 
must be applied in real time. A running 
weighted digital filter is applied to the 
data to reduce noise. First-derivative 
techniques are employed to detect maxi- 
mums and widths at half-height. Second- 
derivative techniques are often used to 
detect and help characterize shoulders. 
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8 DATA BITS IN/OUT 16 ADDRESS BITS 

Fig. 6. Architecture of the Motorola M6800 
CPU. 

Because of ammonia bleed it is often nec- 
essary to accommodate baselines that 
drift and to subtract out plateaus. 

In addition, there is no point in auto- 
mating unless the unit is programmed to 
identify materials by the time window in 
which they elute, and calculate from cali- 
bration factors the concentration of each 
amino acid. This requires the system to 
be capable of accepting a command to 
calibrate, followed by a list of amino 
acids in the standard and their known 
concentrations. The amino acids are en- 
tered in the order in which they will be 
eluted from the column. As the sample is 
analyzed, time windows are calculated 
and response factors determined from 
the known concentrations and observed 
absorptivities. These constants are 
stored as arrays for use when an un- 
known is processed. 

This requires a processor with good 
memory addressing capabilities, multiple 
accumulators, and a 16-bit data word to 
accommodate the mathematical opera- 
tions required. Arithmetic capabilities 

16 DATA BITS IN/OUT 16 ADDRESS BITS 

Fig. 7. Architecture of the National Semicon- 
ductor IMP-16 CPU. 

available in hardware will be helpful. 
The IMP-16 series (Fig. 7) of the Na- 

tional Semiconductor Corp. has four ac- 
cumulators. Two of these (AC2 and 
AC3) may be used as index registers, al- 
lowing "simultaneous" access to two ar- 
rays. The remaining accumulators can be 
used for the typical mathematical opera- 
tions. 

The IMP-16 is a microcoded CPU. 
This means that a special decoding ele- 
ment capable of handling very long 
"command" words is present. Being 
longer, these commands can elicit quite 
complex operations with a single instruc- 
tion. It is possible with microcode to pro- 
vide the IMP-16 with the capability of im- 
plementing special instructions to per- 
form double precision (32 bits on this 
machine) integer arithmetic (addition, 
subtraction, multiplication, and divi- 
sion). The two 16-bit numbers involved 
are placed in the ACO and AC registers, 
and the microcode executed. The results 
are left in ACO and AC1. This speeds up 
the mathematical operations consid- 
erably in comparison to software integral 
arithmetic. Numbers to 4.3 x 109 are ac- 
commodated. 

The IMP-16 has the ability to address 
memory relative to the program counter. 
This can be viewed simply as another op- 
eration in which a displacement with ref- 
erence to a base address is used to calcu- 
late memory address, but where the pro- 
gram counter provides the base address. 
This is a logical extension of the immedi- 
ate addressing scheme described for 
the Intel 8080, where only zero dis- 

placements were allowed. However, in 
the IMP-16 addresses +128 bytes from 
the program counter can be accessed. 
All of these schemes are attempts to pro- 
vide methods by which fewer bits and 
less time are needed to access memory in 
a program. 

The IMP-16 also has indirect address- 
ing. Instead of a direct, relative, or in- 
dexed operation giving the address in 

memory required (pointer-to-memory), 
the indirect operation gives the address 
of the address in memory required (point- 
er-to-a-pointer-to-memory). This feature 
is valuable because the stack in the IMP- 
16 is a hardware stack limited to 16 
words. This makes access to materials 
on the stack rapid, compared to memory 
fetches, but one cannot build long arrays 
in the stack without data "falling 
through" (more than 16 words put in the 
stack) and being lost. 

The indirect method allows a pointer 
to be set up in a memory location and 
then used to create an array in another 

part of memory. Unfortunately it is the 
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program's task to continuously in- 
crement or decrement this pointer loca- 
tion as the file is created. This resembles 
the operations involved in the Intel 
8080, where it was the user's job to up- 
date the pointer-to-memory register in 
creating a list. 

Application 4 

Since the lifetime of perfused biologi- 
cal samples is short, it is usually neces- 
sary to abstract as much information as 
possible from the experiment in a short 
time. Typical experiments involve nerve 
or muscle preparations in which a vari- 
ety of transducers are placed in a large 
number of places (Fig. 4). Galvanic acti- 
vation of the preparation, controlled in 
intensity by the computer, can lead to a 
response studied by simultaneous mea- 
surement of the rate of propagation of 
the electrical impulse in the nerve and 
the response at the activated tissue. 

Electrical, specific chemical ion, and 
pressure transducers will be needed to 
obtain data. These data can measure (i) 
rates of electrical propagation of the stim- 
uli, (ii) propagation delay areas, (iii) ion 
recovery rates, and (iv) response time in 
the tissue. Predictions of fatiguing rate 
must be made, and closed-loop control 
of the experiment may be desirable. 

Sampling of data in such a system re- 
quires a processor with extremely well 
developed memory addressing, since 
multiple arrays will be created and used. 
Mathematical operations are quite so- 
phisticated and require real-time execu- 
tion with a fair degree of resolution. It 
would probably be desirable to be able to 
replay an experiment in slow motion on a 
video terminal. Heretofore these opera- 
tions have been the perogative of a large 
minicomputer, but microprocessors are 
now available with the capabilities of han- 
dling the problem. 

The LSI-11 (Fig. 8), manufactured by 
Digital Equipment Corp., is a micro- 
processor chip set that emulates the oper- 
ations (instruction set) of Digital Equip- 
ment's PDP 11/40 computer. It is thus a 
CPU that falls in the gray area between 
microcomputers and minicomputers. 
With six accumulators, any and all of 
which can be used as index registers or 
stack pointers, the LSI- 1 has remark- 
able power. It has all the forms of ad- 
dressing previously described: direct, in- 
direct, index, and relative. In addition, it 
has autoincrement and autodecrement 
features when indirect addressing is 
used. In this mode the CPU automatical- 
ly steps the pointer forward (increment) 
7 MAY 1976 

Table 2. Memory and time needed to add two 
16-bit numbers. 

Microprocessor Memory Time (bits) (/xsec) 

Intel 8080 120 46 
Motorola M6800 104 35 
National Semiconductor 

IMP-16 80 28 
Digital Equipment 

Corp. LSI-11 48 11.7 

or backward (decrement) through a se- 
quential operation. This removes the 
need for the program to update pointer- 
to-memory information as contiguous 
files are being created. It also has micro- 
coded integer multiplication and division 
as well as two-word floating arithmetic 
addition, subtractions, multiplication, 
and division. The latter mode will ac- 
commodate a range of + 10-+8. Typical 
time for floating division is 150 micro- 
seconds. 

Discussion 

It is appropriate at this point to sum up 
the capabilities of the various processors 
by comparing the relative amount of 
memory storage (for program) and time 
that would be needed to execute the addi- 
tion of two 16-bit words (see Table 2). 

For 32-bit integer multiplication or di- 
vision the IMP-16 will take 2.7 times 
more time than the LSI-11. Although 
equivalent benchmarks are hard to find, 
a 3-byte software floating addition takes 
2.5 msec on the 8080, compared to 50 
/sec for a 4-byte firmware floating addi- 
tion on the LSI-I1 -a factor of 50. Be- 
fore attempting to use this information 
alone to focus on the processor of 
choice, let us look at software. 
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Fig. 8. Architecture of the Digital Equipment 
Corp. LSI-11 CPU. 

The generation of software for micro- 
processors is, and will continue to be, 
the major problem. The CPU can accept 
code only in a language made up of 1's 
and 0's-machine code. Humans 
"speak" arithmetic, algebra, and words, 
but not l's and 0's. It is possible to 
"hand code" from an instruction card in 
machine code. In the simpler processors 
like the Intel 8080, it is possible to code 
programs of less than 500 bytes in this 
way-if the user has had considerable ex- 
perience. As the programs become long- 
er, mistakes in address calculation and 
the need to insert forgotten code become 
insufferable problems. In more complex 
machines, particularly where displace- 
ment values must be calculated, the 
frustration point comes even earlier. 

It is possible to operate in a mnemonic 
language, with abbreviated symbols to 
assist humans to remember instruction 
codes. In this method the user writes 
source code (a language from which an- 
other language is to be derived), using an 
editor which allows for corrections, in- 
sertions, and deletions. This source code 
can be stored temporarily on paper tape, 
cassette, or high-speed rotating memory 
such as floppy disks. The latter is the on- 
ly really satisfactory solution because of 
problems of handling, speed, and error 
rate in the other devices. The source 
code is then submitted to another pro- 
gram called an assembler, which does all 
the address calculations and converts the 
words into instructions that can be han- 
dled by the machine. Unfortunately, add- 
ing the software to support the editor, as- 
sembler, and disk storage and retrieval 
to the bulk storage hardware increases 
the cost of a microprocessor to a point 
where it is equal to or greater than that of 
some minicomputers. Where large num- 
bers of units will be manufactured in- 
house or for resale this can still be eco- 
nomical, but for the one-of-a-kind devel- 
oper it is a disaster. It would be better to 
start off with a well-known mini- 
computer which has a large amount of 
available software. 

Most laboratories are using cross-as- 
semblers (assemblers running on one 
machine that produce machine code for 
another) which run on larger minicom- 
puters or through time-sharing facili- 
ties. These are available for most of 
the large-volume microprocessors; how- 
ever, a careful study should be made be- 
fore assuming that a cross-assembler is 
indeed available for your processor, and 
that it is "bug-free." 

Finally, several companies are begin- 
ning to offer higher-level languages such 
as Basic or a subset of PL-1. The ability 
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to handle real-time functions is lacking in 
the former (just as real-time Basic lacks 
many I/O features). Both produce code 
that is inefficient in its use of memory 
and therefore costs time and money to 
execute. This will not be a serious factor 
for the one-of-a-kind developer. He 
should not be stressing the CPU, and a 
few hundred dollars in memory will eas- 
ily offset the price of coding, which costs 
about $10 per line. At this point in micro- 
processor development high-level lan- 
guages are not universally available or 
properly developed, and they may not be 
available for the CPU that meets the 
hardware and software characteristics 
needed for your application. At least 
three vendors are making micro- 
processors that use the same machine 
code as an existing minicomputer. Thus, 
software at any level can be developed 
on a host minicomputer and "down- 
loaded" without code conversion. This 
is one elegant feature of the LSI-11 
which is a mini-based microprocessor. 

It is vital that the prospective micro- 
processor user be aware that hardware 
and software documentation will be far 
less extensive than similar material pro- 
vided with minicomputers. Micro- 
processor vendors assume a certain level 
of sophistication in their end users and 
provide accordingly. Microprocessor 
hardware may be purchased in the form 
of CPU chip sets, but this is not recom- 
mended for the average scientist. Nor is 
purchasing the CPU card that contains 
most of the decoding and I/O control ele- 
ments. A complete system with some 
software support is most practical. For 
the novice, or even those with consid- 
erable experience with high-level lan- 
guages, it is essential that the machine 
have a bootstrap (the program that loads 

subsequent programs) and a rather so- 
phisticated debug program. The latter 
permits the user to examine and alter the 
content of memory addresses in machine 
code. Programs can be initiated and in 
some cases run in single-step mode or 
with set breakpoints. These are the only 
feasible ways to find errors. Diagnostic 
software that detects and reports hard- 
ware malfunctions is essential, since few 
microprocessors sold have field or facto- 
ry repair service. 

Although high-level executives and op- 
erating systems (a collection of programs 
that aid in programming) are advertised, 
the state of the art is still primitive. Since 
much of the information published in this 

area for minicomputers is often mislead- 
ing, it is doubly important to establish 
the reliability of software claims in the 
microprocessor area. 

The best way to judge your chances 
for success in the plunge into micro- 
processors is to see if the prospective 
vendor or you can understand and an- 
swer the following questions about the 
system of interest to you. 

1) Can the firmware bootstrap and de- 
bugging program accept terminals with 
mark, space, odd, or even parity? 

2) Does the debugging aid permit the 
saving of all registers and flags during ex- 
ecution of breakpoints? 

3) Are the binary-formatted tapes pro- 
vided in absolute format, or is a linking 
loader needed? If one is provided, how 
much memory is required to run it? 

4) Is there a software interrupt disable 
command? If the interrupt priority sched- 
uling is in hardware, does it arbitrate cor- 
rectly? If it is in software, does masking- 
off capability exist in the interface hard- 
ware? 

5) What is the resolution of the float- 
ing point package? (Some 24-bit floating 
point routines only give five-digit resolu- 
tion, compared to eight digits on hand- 
held calculators.) 

6) If an operating system is supported, 
are the device handlers written so that 
they may be added and deleted easily to 
reconfigure the system-or are they writ- 
ten in in-line code, making alteration al- 
most impossible? 

7) If high-level languages are support- 
ed, how long a user program can be run, 
and how many user-assigned symbols 
are permitted in the normal memory con- 
figuration? 

8) What is the bit drop-rate of the pe- 
ripherals provided? 

9) Does the vendor provide ROM 
"burning" facilities so that programs 
may be loaded into nonvolatile memory 
for long-term use? 

10) Who is responsible for issuing re- 
fresh commands in memories that are 
dynamic? And does this process inter- 
fere with the operation of other periph- 
erals? 

All of these above questions have been 
constructed from actual case histories in 
microprocessor applications. The prob- 
lems involved were overcome, but at 
considerable cost in time and money. If 
the vendor or you cannot respond to 
these questions, you are not ready to use 
microprocessors. Microprocessors offer 

an inexpensive solution to the hardware 
'problems encountered in laboratories, 
but they may engender a manpower ex- 
penditure in programming and hardware 
setup that is prohibitive. 

Developments in this area have been 
breathtaking in the last 3 years, but a 
technological plateau has been reached 
that I believe will be maintained for sev- 
eral years. The main thrust during this 
period will be toward lower cost rather 
than an increase in power that is evident 
to the end user. One can then expect the 
introduction of new capabilities in hard- 
ware, mathematics and statistics pack- 
ages, memory methodology, and substi- 
tutes for rotating bulk-storage devices. 
Large-scale integrated circuit chips will 
ease the interfacing task by providing 
flexible, inexpensive I/O control, but 
they will usually be specific to particular 
CPU's and peripherals. A supermarket 
or erector set philosophy in micro- 
computer system design is still a long 
way off. Some think it will never come. 

By this point, it is hoped that the read- 
er will have enough understanding to ana- 
lyze the potential application of micro- 
processors to his tasks. In processes 
where mathematics and memory access- 
ing are minimal and the programs are of a 
length suitable for hand-coding, the Intel 
8080, with its simple-to-understand in- 
struction set, is ideal. Where speed and 
language sophistication are important, 
CPU's like the Motorola M6800 are appli- 
cable. Where speed, mathematical pow- 
er, and instruction set versatility are im- 
portant and expansion is envisaged, look 
to mini-based microcomputers like the 
LSI-11. 

It is strongly urged that your first in- 
troduction to computers not be micro- 
processors. The learning curve is a steep 
one that is best approached by some ex- 
perience on gentler slopes and some pre- 
vious exposure to such factors as the 
cost of program development, problems 
with the mathematics package, and run- 
ning out of real time is desirable. 

Notes 
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