
Some change in peripheral metabolism 
must also have resulted from the central 
5-HT depletions, because juvenile rats 
continued to grow in size as adults, and 
showed no remarkable accumulation of 
abdominal fat at autopsy despite their 
elevated body weights. Thus, the ob- 
served hyperphagia might be secondary, 
or at least complementary, to an altera- 
tion in the secretion, metabolism, or ef- 
fectiveness of pituitary hormone. In this 
regard, it is interesting to note that surgi- 
cal isolation of the basomedial hypothal- 
amus of rats, by knife cuts of areas 
through which serotonergic neurons 
might be expected to ascend, have been 
reported to increase food intake, longitu- 
dinal growth, and circulating levels ol 
growth hormone (20). 

Even if central 5-HT-containing neu- 
rons are involved in mediating satiety, 
there is no reason to restrict their func- 
tion to the cessation of feeding. That is, 
serotonergic neurons have also been im- 
plicated in sleep (21), and the post- 
prandial appearance of synchronized 
electroencephalographic activity (22) 
suggests a general behavioral inhibition 
rather than the removal of hunger per se. 
Thus, an anorexigenic agent like fenflur- 
amine, which appears to increase 5-HT 
activity in the brain (23), may not be 
acting solely to reduce food intake. Sim- 
ilar arguments have been raised recently 
regarding the possible nonspecific mech- 
anisms by which amphetamine and re- 
lated drugs exert their effects on food 
intake (24). 
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Anatomical Study of Cerebral Asymmetry in the 

Temporal Lobe of Humans, Chimpanzees, and Rhesus Monkeys 

Abstract. It is generally accepted that anatomical asymmetries in the temporal lobe 
language region of humans are associated with the asymmetrical representation of 
language function in the left hemisphere. Comparative measurements were taken of 
the length of the left and right Sylvian fissures of human, chimpanzee, and rhesus 
monkey brains. Measurements confirmed the findings of other studies that the 
human Sylvian fissure is longer on the left than on the right. The chimpanzee brains 
had a similar asymmetry but to a lesser degree than the human brains. The rhesus 
brains, however, showed no significant differences between left and right fissure 
lengths. 

Anatomical measurements of the adult 
human brain have shown that the posteri- 
or region of the superior surface of the 
temporal lobe (planum temporale) is 
larger on the left than its homolog on 
the right in about 65 percent of the speci- 
mens examined (1). Since the planum 
temporale is one of the cortical areas 
involved in language function (2), the 
asymmetry seen in the nlanum temporale 

has generally been interpreted as provid- 
ing an anatomical basis for the later- 
alization of language function in one 
hemisphere (3). A recent study found 
asymmetries in the planum temporale of 
newborn as well as adult human brains 
with 86 percent of the newborn and 81 
percent of the adult brains having a 
larger planum temporale on the left than 
on the right (4). The data from the brains 
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Table I. Comparisons of left and right Sylvian fissures in humans, chimpanzees, and rhesus 
monkeys. 

Number Sylvian fissure length (mm) 
Species Number (mean + standard deviation) 

sampled 
Left Right t 

Human 25 83.6 ? 8.1 73.4 ? 8.0 4.83* 
Chimpanzee 25 45.7 ? 4.6 43.7 ? 4.3 3.86* 
Rhesus 25 33.1 ? 2.8 32.7 + 2.3 1.45 

*P < .001 (two-tailed test; d.f. = 24) 

of newborns suggest that the anatomical 
asymmetry associated with language 
function is present in the human before 
the onset of language learning and pre- 
ferred hand usage. 

The basic question asked in our inves- 
tigation is whether homologous anatomi- 
cal asymmetries exist in the brains of 
nonhuman primates. Our aim was to con- 
duct a comparative study of human, 
chimpanzee, and rhesus monkey brains 
with the use of a measure that could be 
applied to all three species. A direct 
measure of the planum temporale could 
not be made for the three species since 
the anterior boundary of the planum, the 
sulcus of Heschl's gyrus, was readily 
identifiable only in the human specimens 
we studied (5). Therefore, the length of 
the Sylvian fissure, which includes the 
length of the planum temporale, was se- 
lected as the comparative measure, since 
the anterior and posterior points of the 
fissure could be readily specified in all 
three species. Moreover, studies com- 
paring the lengths of the human Sylvian 
fissures have found the left to be longer 
than the right (6), a difference that can be 
attributed to the greater length of the left 
planum temporale (3). 

Our material consisted of 25 brains of 
each species, fixed in formalin. All speci- 

mens were undistorted and free from any 
neurological pathology (7). The anterior 
and posterior points of the left and the 
right Sylvian fissures were marked by 
pins. The anterior point of the Sylvian 
fissure was derived in the following man- 
ner. The specimen was held so that the 
ventral surface of the brain was in direct 
view. A ruler aligned perpendicular to 
the sagittal plane was placed against the 
anterior division between the frontal and 
temporal lobes. The anterior pin was 
inserted at the point where the ruler 
touched the Sylvian fissure. In order to 
place the posterior pin, a portion of the 
temporal lobe was separated from the 
adjacent parietal lobe to expose the pos- 
terior boundary of the fissure. The pin 
was inserted at the point where the Syl- 
vian fissure terminated on the lateral 
edge of the temporal lobe. In cases 
where the fissure branched, as some- 
times seen in the human and chimpanzee 
specimens, the pin was placed at the end 
of the deeper branch. For eight human 
specimens where the fissure bifurcated 
and both branches were equally deep, 
the end of the descending branch was 
chosen as the posterior point. Calipers 
were used to measure the straight-line 
distance between the pins (8). Another 
pair of observers repeated our proce- 
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dures on a sample of six specimens from 
each species and found no significant 
differences from our set of measure- 
ments. 

In Fig. I the length of the left Sylvian 
fissure is plotted against the length of the 
right Sylvian fissure for each specimen of 
each species. A longer left Sylvian fis- 
sure was seen in 84 percent of the hu- 
mans, in 80 percent of the chimpanzees, 
and in 44 percent of the rhesus monkeys. 
Equal left and right fissure lengths were 
seen in none of the human, in 12 percent 
of the chimpanzee, and in 36 percent of 
the rhesus brains. 

Table I summarizes the results. The 
Sylvian fissure was significantly longer 
(P < .001) on the left than on the right 
for the human and chimpanzee brains. 
The mean difference between the lengths 
of the left and right fissures was 10.2 mm 
for the human and 2.0 mm for the chim- 
panzee brains. The rhesus brains showed 
no significant difference between the left 
and right fissure lengths. The differences 
between the left and right fissure lengths 
are also expressed as ratios (left to right) 
in order to compare the proportional dif- 
ferences in fissure length among the 
three species. The largest ratio, 1.15 (left 
fissure 15 percent longer than right), is 
for the human and this ratio differs signif- 
icantly from the chimpanzee's ratio of 
1.05 (t = 2.75, d.f. = 48, P < .01). The 
ratio for the chimpanzee in turn is signifi- 
cantly larger than the rhesus's ratio of 
1.01 (t = 2.40, d.f. 48, P < .05). 
These results show that the human and 
the chimpanzee, but not the rhesus, tend 
to have a longer left than right Sylvian fis- 
sure, and that the degree of the asymme- 
try is greater for the human than for the 
chimpanzee. 

Our finding that the total length of the 
Sylvian fissure in the human is longer on 
the left agrees with earlier studies (6). 
Geschwind and Levitsky (1) reported a 
9-mm difference between the length of 
the left and right planum temporale, 
which is remarkably similar to the 10- 
mm difference in the entire Sylvian fis- 
sure length that we found. Also, the pro- 
portion of specimens with a longer left 
Sylvian fissure in our study (84 percent) 
is comparable to the proportion of adult 
specimens (81 percent) with a longer left 
planum temporale in the study by Witel- 
son and Pallie (4). 

In the case of the chimpanzees, our 
finding of a longer left than right Sylvian 
fissure is in agreement with the con- 
clusion of a study published in 1921 by 
Fischer (9), who examined 24 chim- 
panzee brains. Fischer did not report the 
mean difference in fissure length but did 
state that 50 percent of his specimens 
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had longer left fissures (I to 6 mm) and 17 
percent had longer right fissures. In our 
sample 80 percent of the specimens had 
longer left fissures while only 8 percent 
had longer right fissures. The dis- 
crepancies between the two studies 
could be attributed either to measure- 
ment techniques, which Fischer did not 
describe, or to sampling differences. 

The significance of finding an asymme- 
try in the region of the planum temporale 
is due to the fact that the planum tempo- 
rale is part of Wernicke's area, which is 
known to be of primary importance to 
language function (2). Since the sulcus of 
Heschl's gyrus, which is the anterior 
boundary of the planum temporale, is 
poorly developed in the chimpanzee and 
absent in the rhesus (5), it is difficult to 
identify the planum temporale in these 
species by macroscopic observation. 
From cytoarchitectonic studies, how- 
ever, it has been demonstrated that the 
human planum temporale is part of the 
auditory association areas TA and TB 
(10). These cytoarchitectonic areas have 
been identified in the chimpanzee (11) 
and the rhesus (12) and are located, as in 
the human brain, on the superior surface 
of the temporal lobe. Thus, Sylvian fis- 
sure length may be considered an in- 
direct measure of the homolog of the 
human planum temporale in the chim- 
panzee and rhesus brain. 

Our results suggest that anatomical 
asymmetries may be part of an evolution- 
ary development that is reflected by the 
trend toward asymmetry among some of 
the living members of the order Primates 
(13). If functional asymmetries are asso- 
ciated with anatomical asymmetries then 
our findings suggest that asymmetry in 
hemispheric function should not be limit- 
ed to humans (14). The demonstrations 
of some degree of language capability 
among chimpanzees (15) also raises spec- 
ulation as to whether a neuroanatomical 
substrate of asymmetry is a prerequisite 
for language acquisition. 
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The "Pincushion Grid" Illusion 

Abstract. The illusion generated by a ''pincushion grid" is not predictedfrom the 
two-dimensional Fourier transform of the grid. This implies that the visual system 
may not perform tw o-dimensional Fourier transforms of observed patterns. 

The threshold of a given pattern has 
been predicted by determining the two- 
dimensional Fourier transform of that 
pattern. For example, when a checker- 

Fig. 1. Photograph of the two-dimensional 
optical Fourier transform of the pincushion 
grid. There are no diagonal components. 

board is observed at low contrast levels, 
diagonal lines are seen. The two-dimen- 
sional Fourier transform of the low con- 
trast checkerboard has components 
along the diagonal (1). This has sug- 
gested that the visual system performs a 
two-dimensional Fourier transform of 
the observed pattern (2). I now present 
an illusion that is not predicted from the 
two-dimensional Fourier transform of 
the pattern. 

When the "pincushion grid" (see cov- 
er photo) is observed with the dark lines 
horizontal and vertical, the illusion of 
crisscrossing white diagonal lines extend- 
ing between the points of the pincush- 
ions is observed. When the pincushion 
grid is rotated 450, the white lines appear 
vertically and horizontally and the illu- 
sion is intensified. A negative of the pin- 
cushion grid (black pincushions sepa- 
rated by white spaces) produces the illu- 
sion of diagonal black lines. The color of 
the pincushion determines the color of 
the illusion. For example, if the cover 
photo is viewed through a red filter, the 
illusory lines appear red. The illusion dis- 
appears when the grid is out of focus. A 
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