
Letters Letters 

Diabetes Therapy 

Thomas H. Maugh's Research News 
article "Diabetes therapy: Can new tech- 
niques halt complications?" (26 Dec. 1975, 
p. 1281), in which he reviews the current 
problems in biological and mechanical re- 
placement of the nonfunctioning pancreat- 
ic beta cell, is restricted in several respects. 
Maugh disregards factors that add to the 
complexity of islet transplantation re- 
search and overlooks investigators who 
have contributed useful data to the overall 
experience. 

One neglected problem is the severity of 
diabetes in the recipient of islet trans- 
plantation. Prospective human recipients 
will be mostly those with juvenile-type, ke- 
tosis-prone diabetes. Experimental islet 
transplantations done by the investigators 
mentioned in the article were carried out 
on animals with only mild or moderate 
(maturity onset-type) diabetes, induced by 
low doses of alloxan or streptozotocin. Ke- 
tosis does not develop in such animals, and 
thus a much more favorable metabolic 
milieu is created in these recipients than 
one would find in insulin-dependent human 
diabetics. Those groups who have reported 
experiments in ketotic animals (1-3) were 
not mentioned by Maugh. 

Much more information is available 
from investigators both in this country and 
in Europe concerning a wider range of ana- 
tomical locations and types of tissue than 
is apparent from Maugh's survey. Implan- 
tation into the muscle in rats is not as inef- 
fective as implied in the article. We 
presented data to the American Diabetes 
Association Meeting in 1974 showing the 
significant metabolic effect of islets im- 
planted into the psoas muscle of severely 
diabetic rats (2). Impressive results have 
been obtained by transplantation of islets 
into the liver, and the syngeneic islets did 
not impair liver function (4). However, a 
rejection reaction of allogeneic tissue 
might severely damage this vital organ, the 
danger of which would far outweigh the 
benefits of islet transplantation to this site 
in humans. For this reason we have investi- 
gated the spleen as an alternative site for 
transplantation. Metabolic and histologic 
evidence (5) indicates that this is feasible. 
Federlin's group in Germany has success- 
fully injected islets into the peripheral 
venous system of rats (3), and Usadel re- 

ported to the German Diabetes Conven- 
tion last year on the successful growth of 
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pancreas anlage from 14-day-old rat fetus- 
es in the subcutaneous tissue, with sub- 
sequent reversal of diabetes in the host ani- 
mals. 

Finally, we do not see the artificial pan- 
creas as an "alternative" to islet trans- 
plantation, but rather as a step toward pro- 
viding better control for diabetics, preced- 
ing the era of transplantation. Space-age 
technology will overcome some of the limi- 
tations of this device in the foreseeable fu- 
ture, and the great advantage that it poses 
no immunologic problems will make the 
artificial pancreas a useful tool for provid- 
ing a round-the-clock supply of insulin, al- 
beit with conventional (nonhuman) insulin. 
There is, however, another aspect which is 
not borne out by Maugh's discussion: al- 
though glucose is the most important regu- 
lator of insulin release, it is not the only 
one. A host of factors (hormones, amino 
acids, electrolytes, the autonomous ner- 
vous system) act as regulators and modu- 
lators of insulin secretion. Even with 
space-age technology, it would not be pos- 
sible to construct a mechanism that could 
integrate all these factors. This is the rea- 
son why beta-cell transplantation ought to 
be the ultimate goal in the endeavor to 
"cure" the diabetic. 

LAJOS KONCZ 
CLARENCE E. ZIMMERMAN 

Thorndike Laboratory and 
Department of Surgery, 
Harvard Medical School, 
Beth Israel Hospital, 
Boston, Massachusetts 
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Aerodynamics of the Long Pterosaur 
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Crawford H. Greenewalt, in his letter 
(16 May 1975, p. 676) addressing Law- 
son's report, "Pterosaur from the latest 
Cretaceous of West Texas: Discovery of 
the largest flying creature" (14 Mar. 1975, 
p. 947), suggests that it would be valuable 
to consider the aerodynamic consequences 
of the unusually long pterosaur wing. In 
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Aerodynamics of the Long Pterosaur 

Wing 

Crawford H. Greenewalt, in his letter 
(16 May 1975, p. 676) addressing Law- 
son's report, "Pterosaur from the latest 
Cretaceous of West Texas: Discovery of 
the largest flying creature" (14 Mar. 1975, 
p. 947), suggests that it would be valuable 
to consider the aerodynamic consequences 
of the unusually long pterosaur wing. In 

his reply, Lawson (16 May 1975, p. 676) 
indicates that the morphological differ- 
ences between birds and pterosaurs, par- 
ticularly for the larger Pteranodon and 
Quetzalcoatlus northropi (Texas ptero- 
saur), reflect their different modes of 
locomotion. In "Dynamic analysis of 
Pteranodon ingens: A reptilian adaptation 
to flight" (1), I reported on wind tunnel 
scale modeling and biomechanical analysis 
of P. ingens, which attained a 7-meter wing- 
span, second largest to Q. northropi. The 
results of this study show that P. ingens 
was primarily adapted to slow, flapping 
flight and long flight endurance. Wind 
tunnel analysis indicates that the reptile's 
soaring and gliding performance, which 
have traditionally been interpreted as its 
mode of locomotion (2, 3), was greatly 
inferior to that of present-day soaring 
birds because of limitations imposed on 
wing camber placement, wing attack 
angle, wing membrane rigidity, and in- 
ability to reduce its wing area at high 
flight speeds. However, the animal was 
structurally capable of extremely efficient, 
slow, flapping flight owing to wing mem- 
brane twist, metacarpal (wingfinger) rota- 
tion, centralization of its flight muscula- 
ture which reduces the torque associated 
with pectoral muscle flexion, and its very 
high aspect ratio (wingspan: wing area). 

Weight of the adult species was esti- 
mated from scaling up the wing loading 
(0.266 gram per cubic centimeter) of the 
morphologically and functionally similar 
Eumops perotis, a bat, which yields 15 
kilograms, in agreement with Bramwell 
and Whitfield's (3) preferred value of 
15.9 kg from anatomical estimates. Stall 
speed (minimum velocity for level flight) 
of 5 meters per second was derived from 
Gray's (4) equation 

W = /2 CL A p V2 

where CL is the wing lift coefficient, deter- 
mined from wind tunnel tests; A, the wing 
area; and p, the density of air. Maximum 
flight speed of 15 m/sec was estimated 
from the transition to the turbulent flow 
regime. Gray's equation is applicable to 
the reptile, unlike Greenewalt's (5) equa- 
tion 

W = cl3 

where I is the wingspan and c is a constant 
of proportionality, because CL is the aero- 
dynamic index for wing lifting power, 
while wingspan is only one of many factors 
that influence the lift coefficient. The aero- 
dynamic maneuverability of the species, 
unlike birds, was achieved through dynam- 
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