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Fourier Transform 
Infrared Spectroscopy 

The basic principles and current applications 
of a rapidly expanding technique are reviewed. 

J. B. Bates 

Fourier transform (FT) spectroscopy 
has developed during the last 5 years as a 

very active area of interest among special- 
ists in infrared (IR) and nuclear magnetic 
resonance (NMR) spectroscopy. This in- 
terest has been stimulated in part by the ef- 
forts of a small but growing industry in the 
development and manufacture of FT spec- 
trometers. Also, several excellent books (1, 
2) and numerous review articles (3-6) have 
been written at all levels of sophistication 
to describe in detail the principles on which 
the method is founded and to present ex- 
amples of current application. For ex- 
ample, Becker and Farrar (5) discussed 
both FT IR and FT NMR spectroscopy, 
devoting most of their article to the prin- 
ciples and applications of the latter tech- 
nique. Almost certainly there remains no 
one among the specialists in IR or NMR 
spectroscopy or those whose work often 
depends on these techniques who does not 
have at least some basic understanding of 
the important principles and the advan- 
tages of FT spectroscopy. 

This article is directed primarily to that 
segment of the scientific community who 
may not as yet use IR spectroscopy but 
may find it necessary or desirable to do so 
in the future. Its purpose is to provide a 
background in the principles of FT IR 
spectroscopy and to serve as a guide for 
possible applications of this technique. A 
short discussion of Fourier series is 
presented as an aid to understanding how 
FT spectroscopy works. Results are stated 
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may be periodic with period 2c or, even 
though it may be defined only on the inter- 
val (-c,c), its Fourier series representation 
will be periodic with period 2c. Figure 1 
shows a familiar textbook example (8) of a 

square-wave function and several partial 
sums of its Fourier series representation. 
The point to be illustrated in Fig. 1 is that 
the function J(x) can be represented as 

faithfully as desired by including more 
terms in its Fourier series. In a laboratory 
application, the question of how many 
terms to include in order to achieve a de- 
sired accuracy is often determined by the 

storage capacity and perhaps the computa- 
tion time of a small computer. 

The extension of Fourier series represen- 
tation to include functions that are not pe- 
riodic or, equivalently, functions that are 

periodic in the interval (- o, co) leads to 
the concept of Fourier integrals. It turns 
out that certain pairs of functions denoted 
by h(v) and g(6) are related as 

without proof, and only the most essential 
concepts are discussed. Some details which 
are important but are not essential for a 
basic understanding of FT IR are dis- 
cussed at the end of the article. A section 
on applications includes examples from re- 

cently published articles which illustrate 
some of the unique features of FT IR 
spectroscopy. 

Basic Concepts 

As the name implies, FT spectroscopy 
involves a special mathematical treatment 
of spectral data. It is helpful in under- 
standing how FT spectroscopy works to 
consider some elementary properties of 
Fourier series (7, 8). Subject to certain 
conditions (7), a function f(x) can be ex- 
pressed as a power series expansion of sine 
and cosine terms 

2 nC 
Ax) =-i+ Z (Ancos '7f+ BnsinflXX) 

(1) 
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The expansion given by Eq. 1 is known as 
the Fourier series of f(x). In this case, J(x) 

and 

h(v) = fg(6)ei'" d 
--C 

g(6) = f h(v)e -2 dv 
-CO 

(2a) 

(2b) 

where e=:i2~" = cos(2irv6) ? isin(2irvb). 
The use of complex expressions is a conve- 
nience in carrying out certain manipula- 
tions with Fourier integrals. The transfor- 
mations given Eqs. 2a and 2b can be ex- 
pressed in a functional form as 

h(v) = F(v,6)[g()] (3a) 
and 

g(b) = F (b,v)[h(v)] (3b) 

where F-' represents the inverse transfor- 
mation. Note, for example, in Eq. 3a that 
F transforms a function g which depends 
on variable 6 into another function h which 
depends on a different variable, v. This 
means that if we can perform a measure- 
ment to determine g(6) for some range of 
the variable 6, we may be able to recover 
h(v) more rapidly or accurately than we 
could directly measure it. The functions g 
and h which are related by the transforma- 
tions of Eqs. 2 or 3 are known as Fourier 
pairs. Two sets of Fourier pairs of interest 
in FT spectroscopy (9) are illustrated in 
Fig. 2. The h(v) in Fig. 2A represents a 
monochromatic signal of frequency v0 
(cm-'), and its Fourier partner is a cosine 
wave of wavelength 1/vo. The h(v) in Fig. 
2B represents a polychromatic or white 
source of radiation, and its Fourier partner 
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can be viewed as the addition of an infinite 
number of cosine waves of different ampli- 
tudes and wavelengths. The transforma- 
tion given by Eq. 2a implies that all of the 
information in h(v) can be obtained from a 
determination of g(6). However, the range 
of values of the variable b over which g(6) 
can be determined in a measurement will 
be limited to some interval much smaller 
than that specified by the transforma- 
tion-that is, (- oo, o). Thus, experimen- 
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tal limitations result in a truncation of the 
number of terms included in the in- 

tegration. This situation is analogous to 

limiting the number of terms in the Fourier 
series expansion of a function as given in 

Eq. 1, and the effect here is to cause a loss 
.of information to be incurred in recovering 
h(v). The fidelity with which h(v) can be 
obtained will then be determined by cer- 
tain limitations of the apparatus used to 
measure g(b). 
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Fig. 1. Partial sums of the Fourier series representation of a square-wave function: f(x)= 0, 
-2 < x < -1; Jx) =2, -1 < x < 1; fTx)=0, 1 < x < 2. The series expansion is Jtx)= 1 + 
(4/1r)(cos -rx/2 - '/3cos 37rx/2 + 1/s cos 5rx/2 - ...). 
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Fig. 2. Pairs of functions related by the Fourier integral transforms in Eq. 2. 

Fig. 2. Pairs of functions related by the Fourier integral transforms in Eq. 2. 
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Interferometric Spectroscopy 

Basically, an FT spectrometer is a de- 
vice having an optical component which, 
from an input source, produces g(6) over a 
range of 6 values. If immediate results are 
to be obtained in the form of the trans- 
formed spectrum, h(v), it will also consist 
of a small computer system, which is re- 

quired in carrying out the mathematical 

operation represented in Eq. 2. The princi- 
pal optical component of an FT IR spec- 
trometer is a Michelson interferometer, 
which is illustrated in Fig. 3. Its three basic 
parts are a fixed mirror (A), a moving mir- 
ror (B), and a beam splitter (C). The center 
of the beam splitter is denoted by O. Fig- 
ure 3 shows the optical path of a parallel 
light beam through the interferometer. The 
beam is divided at O into two rays. One 

ray travels to fixed mirror A and returns, 
and the other ray travels to mirror B and 
returns. The two rays are then recombined 
at the intersection 0. If initially length 
(OB) = length (OA), then the optical path 
difference, 6, introduced by moving the 
mirror a distance L is 6 = 2L, since the ray 
travels along the path OB twice (out and 

back) before recombination occurs at O. If 
the interferometer is illuminated with a 
monochromatic beam of wavelength X, the 

output will be a cosine signal, as illustrated 
in Fig. 2A. When mirror B is moved by 
L = X/4, then 6 = X/2, and the two beams 
interfere destructively at 0-that is, the in- 

tensity of the combined beams is zero. 
When L = X/2, 6 = X and the two beams 
combine constructively at O to give the 
maximum intensity of the incident beam 

(no losses are assumed). If the inter- 
ferometer is illuminated with a white or 

polychromatic source of light, the output is 
more complicated. Considering this input 
to consist of (infinitely) many mono- 
chromatic sources, then only at 6 = 0 will 
all the input waves add together construc- 

tively to produce a maximum signal. The 

input and output signals for this case are il- 
lustrated in Fig. 2B and Fig. 3. The output 
of the interferometer is measured as a sig- 
nal intensity, I, as a function of the optical 
path difference, 6, and is called the inter- 

ferogram, I(6). 
The preceding background information 

provides a simple overview of the function 
of an FT (that is, interferometric) IR spec- 
trometer. On illumination of the inter- 
ferometer with a white light source and 
translation of the moving mirror, an inter- 

ferogram I(6) is produced which is charac- 
teristic of the source and the beam splitter. 
If the output signal is passed through a 

sample, the sample will absorb certain 

spectral components from I(6), depending 
on its nature. The signal that emerges from 
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the sample is an interferogram, I(5), which 
is characteristic of the sample, the beam 
splitter, and the source. As discussed in de- 
tail in (1), the spectrum S(v) is related to 
I( b) by means of the Fourier integral 

S(v) = Cj [ I(6) 
- '/2 (O)l]e '2 db (4) 

where C is a constant and I(0) is the signal 
intensity at 6 = 0. Theoretically, Eq. 4 
specifies that the spectrum S(v) can be ob- 
tained with the highest fidelity since no in- 
formation has been lost. However, Eq. 4 
requires that the optical path difference ex- 
tend between the limits (- o, oo). This is 
physically impossible since the mirror scan 
will be limited to a finite passage (-L,L). 
The result of limited mirror travel is to 
cause a loss of information in recovering 
S(v). The Fourier series expansion illus- 
trated in Fig. 1 provides a good analogy to 
the mirror displacement in an inter- 
ferometer and the information contained 
in S(v). Increasing the mirror dis- 
placement beyond 6 = 0 is analogous to in- 
cluding more terms in the series expansion 
of J(x). The more terms included-that is, 
the greater the mirror travel--the better 
the definition or resolution of S(v). The re- 
lation between resolution, A v, and mirror 
displacement, 6, may be derived (1, 4) by 
considering an interferometer to be illumi- 
nated with two monochromatic sources, vl 
and v2, where 2 - v, = A dcm-'). In or- 
der to resolve v, and v2, it is necessary to 
move the mirror far enough so that the two 
waves come out of phase. How far the mir- 
ror must move depends on A v. The result 

1 1 
( 

= 
2L (5) 

is the theoretical resolution of a Michelson 
interferometer and hence of an FT spec- 
trometer. For example, to achieve a resolu- 
tion of 1 cm-' the mirror must move by 0.5 
cm beyond 6 = 0, and for a resolution of 
0.1 cm-I it must move 5 cm. 

In summary, to measure a spectrum 
with an FT spectrometer, a Michelson in- 
terferometer is illuminated with a white or 
polychromatic source of radiation and the 
movable mirror is translated over a dis- 
tance (-L,L) which depends on the desired 
resolution. The output signal is passed 
through a sample (or the sample itself 
serves as the source), and the resulting in- 
terferogram signal is received by an IR de- 
tector. The signal produced by the detector 
is sampled at certain increments of 6, de- 
pending on the highest frequency con- 
tained in 1(b). The spectrum S(v) is recov- 
ered from I( ) using the real part of the in- 
tegral transform (1) 

L 
S(v) = C f [I(b) - '/2I(O)]cos(2irv6)db (6) 

A 

C 

INPUT L -1 0 

OUTPUT 

I (8) 

LLi 

or 
-J 

Fig. 3 (top left). Schematic diagram of a Michel- 
son interferometer showing the fixed mirror 
(A), the moving mirror (B), and the beam 
splitter (C). The optical path is shown by the 
arrows. The interferogram output of the broad- 
band input source is shown with a triangular 
apodization function indicated by the dashed 
line. Fig. 4 (top right). Infrared emission 
spectra of NaNO3 dissolved in molten NaCIO3 
measured at - 340?C. [From Bates and Boyd 
(13)] Fig. 5 (bottom). Normalized emission 
spectra from four reactions of F atoms with 
C2H3X molecules. The zero of intensity for 
each spectrum is indicated by the dotted line. 
[From Moehlmann et al. (14)] 
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where L = 26 is the displacement of the 
moving mirror. The spectrum character- 
istic of just the sample can be determined 
by taking the ratio or difference of two 
measurements of S(v) with and without 
the sample. A discussion of additional de- 
tails regarding sampling of the inter- 
ferogram, beam divergence in an inter- 
ferometer and resolution, and the effect of 
truncating the Fourier integral on the spec- 
trum S(v) is given in the last section. 

The difference in principles of operation 
between an FT spectrometer and a conven- 
tional grating instrument results in two 
major advantages of FT spectroscopy. 
These are Fellgett's or the multiplex ad- 
vantage and Jacquinot's or the throughput 
advantage. A discussion of these formal 
advantages is given in the last section. Es- 
sentially, these advantages mean that IR 
spectra can be recorded at a much greater 
speed or at a greater sensitivity than can be 
achieved with a dispersive spectrometer. 
The feasibility of several of the applica- 
tions described below depends on these 
advantages. An additional advantage 
gained with FT IR spectrometers is that 
the spectrum is measured at a constant 
resolution over the entire spectral region, 
as opposed to a grating instrument in 
which the resolution varies with frequency. 
This is an important feature in many 
types of experiments. 

There are basically two types of FT 

spectrometers that are currently in use and 
are manufactured commercially. These are 

systems which use slow scanning and rapid 
scanning Michelson interferometers (10). 
A survey of these interferometric spec- 
trometers from the early instruments to 
the most recent ones has been given by 
Griffiths (3). The instruments of greatest 
interest in FT IR, especially among chem- 
ical spectroscopists, are the rapid scanning 
systems. Their advantages have been dis- 
cussed in some detail previously (4). An 
obvious advantage is the increased speed at 
which a spectrum can be recorded. Also, in 
a slow scanning system the input source 
must be chopped so that the detector re- 
ceives the full signal from the inter- 
ferometer only 50 percent of the time. Be- 
cause a rapid scanning interferometer acts 
as its own chopper, the detector receives 
the full signal all of the time, and therefore 
the instrument is twice as efficient as a slow 

scanning one. Whereas the early slow scan- 

ning instruments were designed for opera- 
tion in the far infrared region (v < 400 

cm-l) (11), a modem rapid scanning in- 
strument is used in this laboratory over the 

region from ~ 15 to - 5000 cm-'. This re- 

gion is covered in several segments, requir- 
ing changes in beam splitter, source, and 
detector. 
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Applications of FT IR Spectroscopy 

Rapid scanning FT IR instrumentation 
has made, and is continuing to make, a 
large impact on IR spectroscopy. The ef- 
fect is comparable to the renaissance that 
occurred in Raman spectroscopy with the 
development of continuous wave gas la- 
sers. The new and interesting experiments 
that have been conducted with FT IR sys- 
tems are too numerous to be surveyed 
completely in an article of this length. A 
few examples of some recently reported in- 
vestigations, chosen to illustrate some of 
the advantages of interferometric tech- 
niques in general and rapid scanning FT 
IR systems in particular, are described in 
this section. 

Emission spectroscopy and IR chem- 
iluminescence. Measurements of the IR 
emission spectra of materials can be used 
to study the chemical and physical proper- 
ties of such systems as molten salts and ce- 
ramics at high temperatures. These mea- 
surements are most conveniently made by 
emission techniques in which the sample 
serves as the source of IR radiation. In the 
case of molten salts, this avoids the prob- 
lem of finding an optical material suitable 
for transmission measurements which can 
also contain a corrosive liquid at temper- 
atures that are usually above 300?C. While 
some IR emission measurements have 
been made with dispersive instruments 

(12), FT IR has been shown to be a superi- 
or technique in all instances, and virtually 
the exclusive method in some, for obtain- 

ing emission spectra of heated samples. 

c 

1800 1400 1000 600CM1 
I I 1 0 I 

Fig. 6. Infrared spectrum of an aqueous solution 
of hemoglobin obtained with an FT spectropho- 
tometer. (A) Absorbance spectrum of H20, (B) 
absorbance spectrum of aqueous hemoglobin 
solution, (C) absorbance spectrum of hemoglo- 
bin in aqueous phase (spectrum B minus spec- 
trum A). [From Koenig and Tabb (16)] 

For example, a study was conducted sev- 
eral years ago in this laboratory to develop 
techniques for measuring IR emission 
spectra of molten salts. Spectra of molten 
nitrates heated in a crude furnace were ob- 
tained with a rapid scanning FT IR spec- 
trometer (13). An example is shown in Fig. 
4 of the emission spectra of sodium nitrate 
dissolved in molten sodium chlorate. The 
V3 band of NO at - 1400 cm-' was easily 

observed at concentrations as low as 0.1 
mole percent, and should be detectable 
at NO3 concentrations several orders of 
magnitude smaller by subtracting the 
NaC103 solvent spectrum from the 
NaClO3 + NaNO3 solution spectrum 
(see below). 

Measurements of emission spectra from 
very distant sources at temperatures below 
250C or from a very small number of mole- 
cules present experimental problems that 
are orders of magnitude more difficult to 
solve than those encountered in measuring 
emission spectra from heated bulk sam- 
ples. For all practical purposes, such mea- 
surements are accessible only through the 
use of rapid scanning FT IR instruments. 
An example of experiments in this cate- 
gory is the IR chemiluminescence mea- 
surements of McDonald and co-workers 
(14, 15). These studies were designed to de- 
termine how energy released in a chemical 
reaction is distributed over the vibrational, 
rotational, and translational degrees of 
freedom of the product molecules. The ef- 
fects of collisional deactivation were mini- 
mized by carrying out the reactions at very 
low pressures (< 10-4 torr). Under these 
conditions, the flux of excited molecules 
observed by the spectrometer was esti- 
mated (14) to be on the order of - 5 x 1015 
sec-'. In order to observe the emission 
from such a small number of molecules, it 
was necessary to reduce the background 
radiation by cooling the reaction chamber 
and the rapid scanning interferometer to 
- 800K with liquid nitrogen. The mercury- 
doped germanium detector was held at 50K 
by liquid helium. Figure 5 shows the lumi- 
nescence spectra observed from the reac- 
tion of F atoms with C2H3X molecules, 
where X = H, CH3, C1, and Br. This reac- 
tion proceeds along two pathways to pro- 
duce either vinyl fluoride or C2H2X radi- 
cals 

C,H3F + X 
F + C2H3X< X 

C2H2X + HF 

The three emission bands at 1654, 1153, 
and 929 cm-' were assigned to the v, v2, 
and v3 modes, respectively, of C2H3F, and 
the band at - 1280 cm-' observed in the 

ethylene and propene reactions was attrib- 
uted to CH3 radicals. From the measured 
intensity ratios of the bands shown in Fig. 

SCIENCE, VOL. 191 



5, the distribution of energy into the v,, 
v2, and v3 vibrational modes of C2H3F 
for each of the four reactions was deter- 
mined. 

Infrared spectra of aqueous solutions. 
Measurements of the IR spectra of aque- 
ous solutions are important in many areas 
of analytical, biological, and physical 
chemistry. Because water has very strong 
IR absorption bands, obtaining spectra of 
dissolved species is often difficult and in 
many cases is beyond the capabilities of a 
dispersion instrument, especially for dilute 
solutions in which the water bands overlap 
those of the solute. The throughput advan- 
tage and the ability to manipulate spectral 
data make such measurements nearly rou- 
tine with an FT IR system. Figure 6 shows 
the IR spectrum of an aqueous solution of 
hemoglobin reported by Koenig and Tabb 
(16). The hemoglobin spectrum in curve C 
was obtained by subtracting curve A, the 
absorption spectrum of water, from curve 
B, the absorption spectrum of the aqueous 
hemoglobin solution. Before subtraction, 
the amide I band at 1657 cm-' is complete- 
ly obscured by the intense water band in 
the same region, and the other features in 
the hemoglobin spectrum are poorly de- 

fined. The data processing system of an FT 
spectrometer allows the operator to scale 
the spectra, if necessary, before sub- 
traction in order to correct for changes in 
path length and solvent concentration, for 
example. As shown in Fig. 6, the correction 
achieved by subtracting the spectra can be 
judged by the flat baseline of the difference 
spectrum in the region of the strong water 
band near 600 cm-'. 

Kinetics of chemical reactions and 
spectra of transient species. The appli- 
cation of rapid scanning FT IR spectros- 
copy to kinetic studies was discussed re- 
cently by Lephardt and Vilcins (17). The 
ability to rapidly measure and store an IR 
spectrum makes it possible to study the ki- 
netics of complex reactions with half-lives 
on the order of seconds. Figure 7 shows the 
gas phase reaction of butadiene with a 
mixture of NO2 and N204. The spectra re- 
corded at - 6.5-second intervals after mix- 
ing show the intensity decrease of reactant 
bands at 1628 cm-' (NO2), 1260 cm-' 
(N204), and 910 cm-' (butadiene) and the 
increase of the nitro product band at 1550 
cm-'. The absorbance profiles of these 
bands, shown in Fig. 8, provide a quan- 
titative measure of the concentrations of 

reactants and product as a function of 
time, from which the kinetics of this reac- 
tion can be determined. 

The results obtained from the kinetic 
study demonstrate the general appli- 
cability of rapid scanning FT IR in- 
struments in measuring IR spectra of tran- 
sient species. This feature has been utilized 
in the development of GC-IR in- 
strumentation, which combines a gas 
phase chromatograph with a rapid scan- 
ning FT spectrometer (18). Kizer (18) has 
demonstrated the operation of a com- 
mercial GC-IR system by measuring the 
IR spectra of the constituents of a 1- il 
sample of a natural product as each con- 
stituent was separated by the gas chro- 
matograph. The chromatogram of this 
sample is displayed in Fig. 9, and the IR 
spectrum of the constituent which pro- 
duces the seventh peak in the chromato- 
gram is shown in Fig. 10. The com- 
paratively high quality of the IR spectrum 
obtained from the small quantity of the 
seventh component shows that the detec- 
tion limit of the GC-IR system extends at 
least to the microgram range. The extent 
of this limit has been recently probed by 
Azarraga (19). Figure 11 (20) shows the 
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Fig. 7 (left). Infrared spectra of a reaction mixture of butadiene and NO,-N204 at 6.5-second intervals after mixing. [From Lephardt and Vilcins 
(17)] Fig. 8 (right). Absorbance profiles of (a) NO2 (1628 cm-'); (b) N20, (1260 cm-'); (c) butadiene (910 cm-'); and (d) nitro produce (1550 cm-') from the reaction of butadiene with an N02-N204 mixture. The time interval between points is 6.5 seconds. [From Lephardt and Vilcins (1 7)] 
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spectra obtained for submicrogram quan- 
tities of some organic compounds that 
were injected into a GC-IR system. These 
results indicate that IR spectra of a useful 
quality can be obtained from 5 x 10-7 g 
quantities of transient species in the gas 
phase by means of rapid scanning FT 
spectroscopy. 

The examples discussed above are but a 
few of the many ways in which FT IR 
spectroscopy has been applied to basic re- 
search problems and to the development of 
new analytical techniques. The list of new 
applications will continue to grow as more 
instruments are placed in operation and as 
technological advances are made to im- 
prove the state of the art. 

100- 

Go- 

2 

40- 

20- 

Some Additional Considerations of 

FT IR Spectroscopy 

Effects of beam divergence and finite 
mirror travel. The resolution of a Michel- 
son interferometer as given in Eq. 5 appar- 
ently depends only on the total dis- 
placement of the moving mirror past 6 = 
0. This assumes that the interferometer is 
illuminated with a perfectly collimated 
beam of light and that no beam divergence 
is produced by the mirrors or beam split- 
ter. In practice, however, divergence of the 
input source does occur, so that rays at the 
edge of the beam travel along different 
paths than those near the center of the 
beam. This means that 6 of the extreme 
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O0 Fig. 10. (A) Infrared spectrum of the seventh 
peak in the chromatogram shown in Fig. 9 and 

product. (B) the same spectrum on an automatically ex- 
panded scale. [From Kizer (18)] 

rays is different from 6 of the axial rays. 
The result is that for some value of 6, the 
axial and extreme rays will interfere de- 
structively at all frequencies so that addi- 
tional mirror displacement produces no 
further increase in resolution (4). The max- 
imum beam divergence that can be toler- 
ated without causing a loss in resolution 
can be expressed as a maximum half-angle 
of the beam, 'max = (A v/ Vmax)l/2 radi- 
ans (4). In this expression, A v is the resolu- 
tion and /max is the highest frequency in 
the spectrum. The reduction in beam diver- 
gence as specified by vmax is accom- 

plished by inserting an aperture into the 
output beam from the interferometer. As 
shown by the expression for 3Ymax, the di- 
ameter of the aperture must be smaller for 
higher resolution and as the upper fre- 
quency limit of the spectrum increases. 

Aside from the question of beam diver- 
gence, we see that the limits of mirror trav- 
el (-L,L) in Eq. 4 will determine the resolu- 
tion achieved in the measurement. Within 
the limit of this resolution, all of the infor- 
mation contained in the spectrum will be 
obtained. However, what effect will trun- 
cating the integration of Eq. 4 (represented 
in Eq. 6) have on the appearance of the 
spectrum? A simple view of the effect is il- 
lustrated by the example shown in Fig. 1. 
Note that for higher values of n, as J(x) is 
more closely approximated, large oscilla- 
tions occur near the points of discontinuity 
(that is, at the corners of the box). This ef- 
fect is known as the Gibbs phenomenon 
(7), and it is produced by the high-fre- 
quency components of the series (terms for 

large n). In the case of the spectrum, S(v), 
small lobes are produced near the base of 
absorption bands. These lobes can be 
viewed as arising from the effect of multi- 
plying the interferogram by a square-wave 
(or boxcar) function (Fig. 1) before the 
transformation is carried out. My experi- 
ence has been that this effect is rarely a 

problem, but it can be minimized by multi- 

plying I(6) with a weighting function be- 
fore computing the transform. This pro- 
cess is called apodization, and it is part of 
the computational procedure after the in- 

terferogram has been obtained. The most 
common apodization function is triangular 
(shown by the dashed line in Fig. 3) such 
that I( ) points at increasing 6 values have 
a decreasing effect on the transformed 
spectrum. While this process aids in reduc- 

ing the side lobes at the base of a band, it 
also results in a loss of resolution (by about 
a factor of 2 with triangular apodization). 
The effects of different types of apodiza- 
tion functions on the transformed spec- 
trum have been discussed in detail by Cod- 

ding and Horlick (21). 
Sampling the interferogram. A question 

that arises in computing the Fourier in- 
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Fig. 11. Infrared spectra of 0.5 -ig quantities of some organic compounds measured after injection 
into a gas chromatograph attached to an FT IR spectrometer. [Courtesy of L. Azarraga] 
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tegral to obtain the spectrum is how many 
data points must be sampled from an inter- 
ferogram in order to obtain, within the 
limit of resolution, all of the information 
contained in I( ). This question is very im- 
portant because certain restrictions will be 
imposed on the amount of data that can be 
handled by the computing facilities avail- 
able. Information theory (22) provides the 
answer that if Vmax is the highest fre- 
quency in a spectrum which extends from 
0 < V < Lmax, then the interferogram must 
be sampled each time 6. changes by 1/ 
(2 Vmax). The total number of data points 
that must be obtained thus depends 
on Vmax and on the total change in 6. Using 
the result from above that Av = 1/6, 
then the number of data points that 
must be sampled from the interferogram 
is given by 2,max/Av. For example, if 
a spectrum is to be measured at a resolu- 
tion of 1 cm-', and if the highest fre- 
quency in the spectrum is 4000 cm-', 
then 8000 data points must be sampled on 
each side of the b = 0 point of the inter- 
ferogram. If both sides of the inter- 
ferogram are scanned, then 16,000 data 
points must be obtained. The amount of 
data that must be stored and processed 
thus depends on vmax and av, and on 
whether or not points from I(6) are sam- 
pled on both sides of 3 = 0. 

Fellgett's and Jacquinot's advantages. 
The two major formal advantages of FT 
IR spectroscopy over the conventional dis- 
persive techniques were briefly mentioned 
above. These advantages are illustrated by 
assuming that the FT and dispersive in- 
struments have certain common character- 
istics. In a grating (or prism) spectrometer, 
a white light source [h(v) in Fig. 2B] illu- 
minates a sample (or an emitting sample 
serves as the source), the resulting radi- 
ation is dispersed by a grating (or prism), 
and small segments of the dispersed light 
fall on a detector after passing through a 
slit which is set at some width to produce a 
resolution of A v. Suppose that the spec- 
trum of interest lies between v2 and v,. 
Then the number of spectral elements, n, is 
defined by n = (v2- v,)/Av. Thus, a spec- 
tral element is that part of S(v) between v2 
and v, which is seen by the detector at any 
given time (23). If TG is the total time re- 
quired to measure a single spectral element 

(24), then nTG is the total time required to 
scan between v2 and v,. An FT spectrome- 
ter contains no dispersing element or slit, 
and therefore all of the spectral informa- 
tion contained in the interval, (v2- v), 
measured at resolution A v, is received by 
the detector in the time, TFT, required to 
record the interferogram. If it is assumed 
that the response times of the grating and 
FT spectrometers are the same, TG = TFT, 
then the spectrum can be recorded n times 
faster with the FT spectrometer than with 
the grating instrument with the same sig- 
nal-to-noise ratio (S/N). On the other 
hand, if the same total time, nTG, is taken 
by the FT spectrometer to record the spec- 
trum, then the gain in S/N is given by 

(S/N)FT (nTG/2 ( -S =.T - nh/2 
(S/N)G TFT / 

(7) 

The n'/2 gain in S/N is known as Fellgett's 
advantage or, more descriptively, as the 
multiplex advantage (9). The multiplex ad- 
vantage is achieved by the way in which an 
interferometer functions and by the rela- 
tionship, through the Fourier transform, 
between the input signal and the output 
signal. With the assumption TG = TFT, the 
FT spectrometer examines the entire spec- 
trum in the same period of time that the 
grating instrument requires to examine a 
single spectral element. For example, if 
^2 - vl = 4000 cm-' and A v = cm-', then 
n = 4000. Theoretically, an FT spectrome- 
ter can acquire the spectrum from 0 to 
4000 cm-' with a resolution of 1 cm-' 4000 
times faster than a grating instrument at 
the same S/N, or, from Eq. 7, a factor of 
- 63 increase in S/N can be gained with 
the FT spectrometer recording the spec- 
trum in the same amount of time required 
by the dispersive spectrometer. 

Jacquinot's or the throughput advantage 
results from the loss in energy of the input 
source in a dispersive instrument because 
of the presence of a grating and slit be- 
tween the source and the detector. Such 
losses do not occur in an FT spectrometer 
since these components are not required. 
As discussed by Bell (I), the ratio of 
the throughputs for an FT and a grating 
instrument is given approximately by 
EFT/EG 27r(F/i), where F is the focal 
length of the collimator and I is the slit 
height. It is assumed that the focal length, 

the area of the collimator, and the resolv- 
ing power are the same in both instru- 
ments. This expression also assumes that 
the grating in the dispersive instrument is 
set at the angle of maximum efficiency. 
Research quality commercial grating 
instruments have typical F/l ratios of 
- 22 to - 33, so that EFT/EG ranges be- 
tween - 140 and - 200. The high through- 
put of interferometric spectrometers 
means that they can be used to great ad- 
vantage in observing spectra from very 
weak sources. For this reason, they have 
been extensively employed in astronomical 
observations and, more recently, to ob- 
serve emission spectra from chemical 
systems at relatively low temperatures. 
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