
though more variable, largely confirm two 
of the findings of Hirsch and Spinelli (4): 
(i) About half of the 350 cells studied 
were either unresponsive, poorly and er- 
ratically responsive, or nonselective in 
their responses to visual stimuli. (ii) The 
majority of the remaining selective units 
were monocularly driven and preferred 
orientations near the one to which the 
effective eye had been exposed. These 
results will be reported in full elsewhere. 
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Perceived Visual Motion as Effective Stimulus to 

Pursuit Eye Movement System 
Abstract. Human eye tracking of a foveal afterimage during angular head oscillation 

in the dark produced smooth eye movements exceeding those for normal vestibular nys- 
tagmus, and a reduction in the frequency of the fast phase component of nystagmus eye 
movements. These results may support a closed loop extension of the corollary discharge 
theory, with oculomotor commands based on perceived object velocity. 
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The relative stability of the visual world 
during voluntary eye movements is a clas- 
sical problem in psychophysics (1). The de- 
bate has centered around inflow (proprio- 
ceptive feedback) versus outflow (efferent 
copy, Helmholtz's effort of will, corollary 
discharge) explanations to account for 
compensation of the influence of eye move- 
ments upon retinal image motion. Psycho- 
physical evidence involving active or pas- 
sive eye movements tends to support the 
outflow theory (2). The control of eye 
tracking movement has more recently been 
studied from the servomechanical point of 
view, where the emphasis of experiments 
and cybernetic models has been on the 
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causal relationships between the target 
motion or retinal motion and the resulting 
saccadic and pursuit eye movements (3). 
The need to relate the new (objective) and 
old (subjective) studies has been recog- 
nized (4). Might not the perceived target 
motion (rather than the actual target mo- 
tion) be utilized for generating eye move- 
ment commands? This possibility, raised 

independently by Heywood (5) and by 
Rashbass (6) and Robinson (7) in in- 

terpreting the eye tracking model of 

Young et al. (8), is examined here through 
an experiment involving afterimage track- 
ing during vestibular stimulation. 

The experiment is intended to test the 
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Fig. 1. Compensation by corollary discharge for the eye movement effect on the retinal image mo- 
tion. In this experiment the input is from head rotation. Tracking a foveal afterimage rather than an 
external target opens the retinal feedback loop and activates only the internal positive feedback loop 
that results from connecting the corollary discharge with the postulated perceptual feedback path; G, 
open loop gain of vestibulo-ocular reflex arc; K, gain of corollary discharge path. 
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hypothesis of a feedback loop from per- 
ceived target velocity to smooth eye move- 
ment. This "perceptual feedback hypothe- 
sis" is indicated by broken line I in 
Fig. 1. As a means of generating smooth 
eye movements without any possible feed- 
back from retinal velocity or from per- 
ceived target motion, we stimulated the 
vestibular system by passive sinusoidal ro- 
tation in the dark. It was then necessary to 
generate a visible target that could be per- 
ceived as moving relative to the observer 
but would produce a stationary retinal im- 
age. A small foveally centered afterimage 
served to stimulate loop I, but not loop II, 
the retinal slip feedback path. During sub- 
ject rotation, the afterimage, remaining 
stationary on the retina, nevertheless ap- 
pears to move relative to the subject (9). 
The influence of this perceived target mo- 
tion on vestibular nystagmus during the 
forced visual tracking is evidence support- 
ing the perceptual feedback hypothesis. 

Four subjects were rotated about a verti- 
cal axis in the dark, head maintained erect 
by means of a Barany-type rotating chair 
and cabin. The frequency of oscillation was 
varied randomly in the range 0.025 to 0.7 
hertz. Peak angular velocity was also var- 
ied, but never exceeded 40 deg/sec. To pro- 
duce brisk nystagmus, alertness was main- 
tained by having subjects perform mental 
arithmetic. After several cycles of oscilla- 
tion in the dark to establish a steady pat- 
tern of vestibular nystagmus, a fixation 
point was lighted and a small monocular 
foveal afterimage was produced on the 
right eye by a flashbulb behind an aperture. 
Subjects were instructed to fixate the tar- 
get and indicate its direction of motion 
with a three-position switch. [Kommerell 
and Taumer (10) showed the importance of 
attention in directing afterimage tracking.] 
Movements of the right eye were moni- 
tored continuously with a pulsed infrared 
photoelectric monitor. 

A typical recording is shown in Fig. 2. 
The eye movement pattern during initial 
rotation in the dark at 0.25 hertz shows 
normal vestibular nystagmus, with slow 
phases compensating for chair motion and 
with regular return fast phases. This is 
clearly seen in the cumulative eye position, 
which is a computer-reconstructed sum of 
all slow phase movements (11). Following 
delivery of the flash and appearance of the 
afterimage, the fast phase of nystagmus is 
almost entirely absent, and the eye move- 
ment resembles tracking of sinusoidal tar- 
get motion. The amplitude of the slow 
phase component of the roughly sinusoidal 
eye movement pattern is markedly in- 
creased, and there is a slight pre- 
ponderance of movement to the right, as 
seen in the cumulative eye position trace. 
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Table 1. Amplitude ratio and phase lag of smooth eye movement relative to sinusoidal head rotation. 
Eye movement during afterimage tracking is compared to the slow phase of vestibular nystagmus in 
complete darkness without afterimage. Four subjects were studied; S.D., standard deviation. 

Amplitude ratio (db) Phase lag angle, eye velocity 
relative to chair velocity (deg) 

Frequency 
(hertz) No afterimage Afterimage No afterimage Afterimage 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

0.025 -2.10 1.60 -0.54 2.33 145.8 19.8 111.3 18.5 
0.06 -3.77 2.21 -0.02 0.97 173.2 15.7 133.3 10.6 
0.10 -3.99 2.05 -1.71 2.05 180.0 15.1 159.7 10.0 
0.25 -2.88 2.24 1.06 1.45 173.5 10.1 158.5 4.2 
0.50 -2.75 1.81 2.95 2.28 179.8 11.6 169.3 7.2 
0.70 -1.77 0.38 3.15 2.28 166.5 17.5 158.3 9.0 

The phase lag of smooth eye movement ve- 
locity relative to the chair velocity is less 
during afterimage tracking than during 
vestibular nystagmus in the dark. Direc- 
tion of apparent motion of the afterimage 
relative to the observer is in phase with the 
eye movement, as expected from the corol- 
lary discharge theory. In summary, chair 
rotation to the left causes a slow-phase 
compensatory eye movement to the right. 
The afterimage, which is stationary on the 
retina, appears to move to the right during 
the slow eye movement. Finally, in support 

of the perceptual feedback hypothesis, the 
perceived target motion to the right pro- 
duces further slow eye movement to the 
right, resulting in an increase in amplitude 
of the observed eye movement. 

In the last part of the sample record, as 
the afterimage fades and is no longer seen, 
the eye movement pattern returns to the 
initial pattern of vestibular nystagmus in 
the dark. For the four subjects tested, the 
frequency response of the vestibulo-ocular 
reflex relating cumulative eye velocity to 
chair velocity is given in Table 1. As com- 

c 0.25 Hz Right 

Q`0 0 
o [/ 10 ? Left 

;. cj,,o^^4 yAAAAA/ 
o --) 'a r0T -1 

?- 10 Delivery 
of flash 

No visual stimulus Afterimage tracking 
.o 1- 5 sec Right 

* - 80 
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Direction of apparent afterimage motion 

Lete dark 

Back to nystagmus 
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R to L 

Fig. 2. Sample record for one subject at the oscillation frequency of 0.25 hertz. During the after- 
image tracking, note (i) the tendency toward disappearance of the fast phase component of nys- 
tagmus; (ii) the essential agreement between direction of apparent motion of the afterimage and the 
direction of smooth eye movement; and (iii) the amplitude increase of the smooth eye movement as 
compared with the nystagmus slow phase in complete darkness. 
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pared to the no-afterimage case, after- 
image vestibular response has significantly 
higher gain and lower phase lag over the 
range tested (P < .05). Similar effects were 
seen for the vestibulo-ocular frequency re- 
sponse when aperiodic motion was studied, 
with and without an afterimage (12). This 
difference between the dark and after- 
image tracking cases supports the per- 
ceptual feedback hypothesis. 

The observation that fast phases are vir- 
tually eliminated by a foveal afterimage 
supports the interpretation that the over- 
riding information used for saccade gener- 
ation is displacement of the target image 
from the foveal threshold (13). The in- 
crease in amplitude of the slow phase dur- 
ing afterimage tracking may imply the 
existence of a positive feedback loop not 
present during rotation in the dark. With 
path II in Fig. 1 open (no retinal motion), 
the remaining feedback (path I) is positive. 
Any perceived target motion generates a 
smooth eye movement in the same direc- 
tion, presumably of the same velocity (G = 
1 in Fig. 1). Corollary discharge, in the ab- 
sence of any retinal feedback, results in a 
new perceived target velocity in the direc- 
tion of the eye movement, and with veloci- 

ty K times that of the eye and the original 
perception. Since the system is stable (no 
runaway pursuit instability is seen in after- 
image tracking), the positive feedback loop 
must have gain less than unity (K < 1). On 
the other hand, the corollary discharge the- 

ory would require that K = 1 so that the 
stability of the perceived world is main- 
tained during eye movements. The perfect 
cancellation implied by K = 1 would in- 
dicate that eye movements have no net ef- 
fect on perceived target velocity in normal 
tracking, and would effectively open the 
feedback loop. 

A possible explanation is that the corol- 
lary discharge gain is less than unity-that 
compensation for pursuit tracking is only 
partial, as may be observed by noting the 

apparent motion of a stationary back- 

ground during fast pursuit tracking of a 

target. Supporting this explanation is the 

experiment of Dichgans et al. (14) showing 
that the subjective velocity of a moving vi- 
sual target is about 1.6 times greater when 
viewed by stationary eyes (retinal motion 
only) than when tracked with pursuit mo- 
tion. This suggests that the corollary dis- 
charge accounts for only about 63 percent 
(K 1/1.6) of the retinal image motion 
associated with smooth eye movement, 
and that the slow phase amplitude in our 
foveal afterimage experiment should in- 
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while retaining the essential function of 

corollary discharge for perception (15). 
Partial cancellation might also account for 
the oculogyral illusion, the apparent mo- 
tion of a real, head-fixed target during ves- 
tibular stimulation. Despite attempts at 
visual fixation, some vestibular nystagmus 
persists. The motion illusion is in the direc- 
tion opposite to the slow phase component 
(in contrast to the case in afterimage track- 
ing), which indicates incomplete com- 
pensation for the slow eye movement. 

Finally, there are two alternative ex- 

planations for the current results which 
cannot yet be dismissed. (i) The removal of 
the fast phase of nystagmus may have 
eliminated a mechanical interaction be- 
tween the phases (16). (ii) The presence of 
a visual stimulus (afterimage) in itself may 
have raised the level of subjective attention 
and increased the gain in the vestibulo-ocu- 
lar reflex arc. In this regard, it should be 
recalled that increase in attention by other 
means and attempts to stare straight ahead 
increase the vestibulo-ocular gain. 
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tibular stimulation. Despite attempts at 
visual fixation, some vestibular nystagmus 
persists. The motion illusion is in the direc- 
tion opposite to the slow phase component 
(in contrast to the case in afterimage track- 
ing), which indicates incomplete com- 
pensation for the slow eye movement. 

Finally, there are two alternative ex- 

planations for the current results which 
cannot yet be dismissed. (i) The removal of 
the fast phase of nystagmus may have 
eliminated a mechanical interaction be- 
tween the phases (16). (ii) The presence of 
a visual stimulus (afterimage) in itself may 
have raised the level of subjective attention 
and increased the gain in the vestibulo-ocu- 
lar reflex arc. In this regard, it should be 
recalled that increase in attention by other 
means and attempts to stare straight ahead 
increase the vestibulo-ocular gain. 
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the product of its unique mode of breath- 

ing, the spout. 
In late January and early February we 

took advantage of the whales being in the 
calm water of the lagoons to observe and 
make a refined examination of the timing 
and structure of the spout. During this pe- 
riod we had the opportunity to capture and 
hold calves in shallow water for periods of 
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Spout of the Gray Whale: Its Physical Characteristics 

Abstract. In a calm lagoon of Baja California the spout or blow of adult and young 

gray whales, Eschrichtius robustus, was observed. Of three calves the maximum flow rate 
was 200 liters per second, and the duration of both expiration and inspiration was slightly 
less than I second. Gas passes through the external nares at 44 meters per second during 

inspiration and four to five times this rate during expiration. At this latitude the whale's 

spout consists mainly ofseawater blown up during expiration. 
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