
the hypolipidemic property of these drugs 
and not to independent actions. In addi- 

tion, to our knowledge, all known peroxi- 
some proliferators have hypolipidemic 
properties including acetylsalicylic acid, 
which produces a minimal to moderate in- 
crease in peroxisome profiles (22). The 
mechanism by which these hypolipidemic 
drugs produce peroxisome proliferation in 
the liver cells and their role in lipid metab- 
olism are not understood. The frequent as- 
sociation of hepatic peroxisome prolifera- 
tion with drug-induced hypolipidemia sug- 
gests that either peroxisome catalase or 
some other peroxisomal enzyme may be 

responsible for the hypocholesterolemic 
and hypotriglyceridemic effects (11, 23). 
However, only if a nonhypolipidemic per- 
oxisome proliferator is found can these 
two effects be considered unrelated. Until 
such a compound is identified, it is reason- 
able to direct future studies towards clari- 
fication of the role of peroxisomes in lipid 
metabolism. 
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Recent interest in the molecular basis of 
circadian rhythmicity has focused on the 
possible role of membranes in this phe- 
nomenon. Much of the impetus for this 
thinking has come from experiments in 
which substances likely to affect mem- 
brane structure or function alter circadian 
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periodicity. For example, ethyl alcohol and 
D20 cause phase shifts or changes of peri- 
od length in the leaf movement rhythm of 
Phaseolus (1), in the activity rhythm of the 
isopod Excirolana (2), and the phototaxis 
rhythm of Euglena (3). In addition, pulses 
of K+ cause phase shifts in the spontaneous 
rhythmic firing of the optic nerve of Aply- 
sia (4), and valinomycin, which alters 
membrane transport of K+, causes phase 
shifts in Phaseolus (5) and Gonyaulax (6). 
Much of this type of information has been 
incorporated in the ion-flux model of the 
circadian clock proposed by Njus et al. (7). 

Adenosine 3',5'-monophosphate (cyclic 
AMP) is ubiquitous in both higher and 
lower organisms and plays a variety of reg- 
ulatory roles in these systems (8). Adenyl- 
ate cyclase and cyclic AMP phospho- 
diesterase, the enzymes that control endog- 
enous cyclic AMP levels, are often mem- 
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Fig. 1. Lengthening the period of the circadian 
rhythm of conidiation in Neurospora crassa. 
Each line represents one strain tested with one 
drug at the indicated concentrations. Symbols 
used to denote the various strains are as follows: 
O, frq+; *, frq-f; A, frq-2; and *, frq-3. Sym- 
bols used to denote different drugs are as fol- 
lows: , theophylline; --, aminophylline; 
and ----, caffeine. Each point represents the 
mean of 12 replicate growth tubes. In all but 
three cases, the standard deviations ranged from 
0.2 to 0.6. In the other three cases they ranged 
from 0.7 to 0.9. 
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Circadian Periodicity in Neurospora: Alteration by 
Inhibitors of Cyclic AMP Phosphodiesterase 

Abstract. Three methyl xanthine inhibitors of adenosine 3',5'-monophosphate 
phosphodiesterase-theophylline, aminophylline, and caffeine-lengthen the period of 
the circadian conidiation rhythm of Neurospora. The effects are seen in wild-type strains 
and in three mutant strains with genetically altered period lengths. These results suggest 
the possible involvement of adenosine 3',5'-monophosphate in the control of circadian 
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brane-bound, and their activities are 
affected by many of the same substances 
that affect circadian rhythms (9). In addi- 
tion, recent measurements on mammalian 
cells in culture have demonstrated fluctua- 
tions in cyclic AMP levels associated with 
the cell cycle (10) and have suggested the 
possibility of an oscillatory feedback sys- 
tem in which the levels of cyclic AMP itself 
affect the synthesis of these two enzymes 
or their activities (11). In view of the possi- 
ble relation between circadian clock cycles 
and cell cycles (12), oscillations in cyclic 
AMP levels offer an attractive possibility 
for a role in the control of circadian clocks. 
This report presents our initial attempts to 
determine whether cyclic AMP is involved 
in the circadian clock of Neurospora and 
shows a lengthening of the period of the 
circadian conidiation rhythm by three 
methyl xanthine inhibitors of cyclic AMP 
phosphodiesterase. 

The following strains of Neurospora 
crassa were used in these experiments: 
band, which serves as the "wild type" (13), 
and three mutants derived from band, each 
of which has a period length different from 
band: frq-l, frq-2, and frq-3 (14). All cul- 
ture conditions, media, and procedures for 
measuring period length of the conidiation 
rhythm on "race" tubes were as previously 
described (14). 

Theophylline, an inhibitor of Neuros- 
pora cyclic AMP phosphodiesterase (15), 
causes a small increase in the period 
lengths of the conidiation rhythm in wild- 
type and in each of the three mutant 
strains (see Fig. 1). Aminophylline, a de- 
rivative of theophylline that enters the cells 
more readily than theophylline and there- 
fore inhibits phosphodiesterase in vivo at 
lower concentrations than theophylline 
(16), also causes a significant period length- 
ening and, as expected, at lower concen- 
trations than theophylline. Finally, caf- 
feine, another inhibitor of cyclic AMP 

phosphodiesterase (15), also causes signifi- 
cant increases in period length (Fig. 1). 

Although at high concentrations all of 
these compounds are toxic to the orga- 
nism, period lengthening occurred at con- 
centrations that correspond to those neces- 

sary to inhibit phosphodiesterase (15) and 
that did not inhibit growth rate. In fact 
some low concentrations actually caused a 
small increase in linear growth rate (Table 
1), a phenomenon similar to that pre- 
viously reported in Neurospora (16). 

These results indicate that inhibitors of 

cyclic AMP phosphodiesterase lengthen 
the period of the Neurospora clock. In ad- 
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Table 1. Effect of aminophylline on linear 
growth rate of Neurospora. All standard devia- 
tions were 0.2 cm or less. 

Linear growth rates (cm/day) 
at the following concentrations 

Strain (mM) of aminophylline 

0 1 2 5 

frq+ 2.51 2.69 3.07 2.74 
frq-I 2.48 2.49 3.04 2.70 
frq-2 2.57 2.66 3.08 2.72 
frq-3 2.46 2.71 2.91 2.74 
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AMP metabolism was not recognized at 
that time. 

It would be premature to conclude, how- 
ever, that such results demonstrate that cy- 
clic AMP is involved directly in the control 
of the circadian clock. First of all, it is not 
known definitely that the effect of the 
drugs is mediated through their inhibition 
of phosphodiesterase, since they are known 
to affect other cellular processes, such as 
ion transport and macromolecular syn- 
thesis. However, the effectiveness of all 
three inhibitors at concentrations known 
to inhibit Neurospora phosphodiesterase 
and at concentrations that do not inhibit 
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People with either the genetic immuno- 
logic deficiency diseases or drug-induced 
immunosuppression have an increased risk 
for developing lymphoid leukemia or lym- 
phoma (1). This type of observation led 
Burnet to propose that an immuno- 
surveillance mechanism may operate un- 
der natural conditions to eliminate malig- 
nant cells (2). Most studies with inbred 
mice and other laboratory rodents support 
this hypothesis (3). Some observations, 
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(18) and the fungus Phycomyces (19) vis- 
ible light causes a significant decrease in 
the endogenous cyclic AMP levels, and at 
least for frog retinal tissue, this effect is 
due to the light activation of phospho- 
diesterase. This type of phenomenon is ex- 
actly what has been predicted in several 
molecular models for the clock (20). 
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however, such as the apparent lack of an 
increased risk for development of some 
types of tumors in genetically athymic 
(nude) mice have provided arguments 
against the immunosurveillance concept 
(4). It has been difficult to design experi- 
ments that test the application of the im- 
munosurveillance hypothesis to spon- 
taneous neoplasms of outbred mammals 
because the etiologic agents for naturally 
occurring tumors are generally unknown, 
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Immunosurveillance of Naturally Occurring Feline Leukemia 

Abstract. When compared to their housemates that subsequently developed leukemia, 
cats that remained healthy had five- to tenfold higher (geometric mean) humoral anti- 

body titers to the feline oncornavirus-associated cell membrane antigen. This is compat- 
ible with the application of the immunosurveillance hypothesis to the natural develop- 
ment of leukemia in an outbred mammalian species. 
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