
nection with the optic lobes. This pathway 
might or might not be part of the visual 
system. As suggested for the pineal of 
sparrows (23), the optic lobes of the cricket 
could house a self-sustaining oscillator, 
driving a damped oscillator in another part 
of the brain which directly controls singing 
activity. Entrainment, then, of bilobecto- 
mized crickets would be due to direct driv- 
ing of the damped oscillator by the temper- 
ature cycle. Previous studies have argued 
against multiple oscillators for different 
behaviors in this cricket species (24). It 
seems even more likely that one behavior is 
not controlled by as many oscillators as 
there are Zeitgebers. Therefore, a more 
parsimonious explanation demands a 
single timing device which receives afferent 
input of hierarchically ordered environ- 
mental stimuli which act as Zeitgebers. 
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mals showed no significant (? 2 standard errors) 
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During the past two decades, extensive 
research (1) on chemical evolution has led 
to the widespread belief that the formation 
of primitive proteins occurred in two 
stages: a-amino acid synthesis initiated by 
the action of natural sources of high energy 
on the components of a reducing atmo- 
sphere followed by polycondensation of 
the accumulated monomers in the oceans 
or on land. A more critical examination of 
the evidence for the second step, however, 
suggests that the inherent thermodynamic 
barrier to spontaneous polymerization of 
a-amino acids has only been overcome by 
invoking specific environments-anhy- 
drous locales, high-temperature milieus, 
or acidic bodies of water, for example- 
that may not be characteristic of a young, 
developing planet. We now present experi- 
mental results consistent with an alterna- 
tive route proposed for the origin of pro- 
teins-the direct synthesis of hetero- 
polypeptides from hydrogen cyanide and 
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Both groups entrained again to HTLT 12: 12 after 
termination of the 30-hour cycle. 

20. Arrhythmia here means a total desynchronization 
with no apparent periodicities. For instance, Fou- 
rier analysis of the activity depicted in Fig. 2 for 
days 30 to 42 (LL, 25?C constant) shows no signifi- 
cant periodicities within 95 percent confidence lim- 
its. The similarity in the total amount of singing in 
lobectomized and normal crickets (6) indicates 
that the operation is not quantitatively releasing or 
suppressing the singing. 
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water without the intervening formation of 
a-amino acids. 

According to this hypothesis (2), a low- 
energy pathway exists (Fig. 1) that allows 
hydrogen cyanide (1) to polymerize readily 
to polyaminomalononitrile (4) via dimeric 
hydrogen cyanide (2) and its polymer (3). 
Semiempirical quantum-mechanical calcu- 
lations (INDO) suggest that 2 is probably 
azacyclopropenylidenimine (3) rather than 
iminoacetonitrile or aminocyanocarbene 
(4, 5), other possible structures that could 
also lead to 3. Successive reactions of hy- 
drogen cyanide with the reactive nitrile 
groups of 4 then yield heteropolyamidines 
(5) which on contact with water are con- 
verted to heteropolypeptides (6 and 7) after 
a series of hydrolysis and decarboxylation 
steps (6, 7). 

To demonstrate the feasibility of this 
postulated conversion of a homopolymer 
to a heteropolymer it would be desirable to 
synthesize 4 and transform it to 7 by treat- 
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Heteropolypeptides from Poly-a-Cyanoglycine and Hydrogen 

Cyanide: A Model for the Origin of Proteins 

Abstract. Poly-a-cyanoglycine, a homopolymer synthesized from the N-carboxyanhy- 
dride of a-cyanoglycine, is converted by cumulative reactions of hydrogen cyanide to het- 
eropolypeptides that can be hydrolyzed to protein amino acids, including glycine, alanine, 
valine, aspartic acid, and glutamic acid. These results are consistent with the hypothesis 
that the original heteropolypeptides on the earth arose spontaneously from hydrogen cy- 
anide and water without the intervening formation of a-amino acids. 
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Table 1. Distribution of '3C-labeled species for a^mino acids derived from poly-a-cyanoglycine and 
labeled HCN (90 percent H'3CN). 

C Mole percent of amino acid with the 
atoms/ following number of 13C atoms: 

Amino acid mole- 
cule Zero One Two Three Four Five 

Glycine 2 57 12 31 
Alanine 3 61 21 11 7 
/-Alanine 3 62 23 9 6 
Aspartic acid 4 41 29 18 12 0 
Diaminosuccinic acid 4 49 30 13 8 0 
a-Aminobutyric acid 4 46 18 29 7 0 
Glutamic acid 5 78 13 5 2 2 0 
Valine 5 67 33 0 0 0 

ment first with hydrogen cyanide and then 
with water. A more accessible approach, 
however, is to use poly-a-cyanoglycine (8), 
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since this polyamide analog of the poly- 
amidine (4) can now be obtained from a- 

cyanoglycine N-carboxyanhydride (9) (8) 
by well-established procedures (9). We re- 

port here the first synthesis of poly-a-cy- 
anoglycine (10) and its modification by hy- 
drogen cyanide and water to hetero- 

polypeptides possessing at least five of the 
side chains of proteins today (11). 

Ideally, such an investigation would in- 
volve simply the treatment of 8 with hydro- 
gen cyanide followed by total hydrolysis 
and amino acid analysis. According to this 

model, hydrolysis of pure 8 would give gly- 
cine quantitatively since polyglycine would 
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CF3CN H-CH 
+ IC 

CH2 
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0 

CF3CNH=CHCH=C=O 
+ 

be formed by spontaneous decarboxyl: ion 
of the a-carboxyl intermediate, poly:imi- 
nomalonic acid (12), whereas after reac- 
tion of 8 with hydrogen cyanide and water, 
other amino acids would also be expected 
(13). A complication immediately arises, 
however, because of the concurrent syn- 
thesis of heteropolypeptides that might 
also take place via the polymerization of 
HCN. We therefore used labeled hydrogen 
cyanide (90 percent H'3CN) so that the rel- 
ative contributions of the two possible 
processes for heteropolypeptide formation 
could be estimated. 

In a typical experiment, labeled HCN 

generated from sulfuric acid (concen- 
trated) and potassium cyanide (90 percent 
K'3CN, 1.0 g, 0.015 mole) was transferred 
in vacuo to a reaction chamber immersed 
in liquid nitrogen, containing a solution of 
8 (0.0138 g) in freshly distilled acetonitrile 

(6 ml); any water from the generating flask 
was removed in transit by a cold trap 
cooled to --50?C by an acetone water Dry 
Ice bath. Ammonia (25 ml at standard 

pressure and temperature, 0.001 mole) was 
introduced as a catalyst, and the liquid ni- 

trogen bath was replaced by a magnetic 
stirrer. After 40 days the reaction mixture 
had changed from yellow to orange to dark 
brown in color. Unreacted hydrogen cy- 
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Fig. 2. Mass spectra of TAB derivatives of aspartic acid. (A) From sample of 8 modified with labeled 
HCN (90 percent H'3CN). (B) From standard sample. Major peaks of B are identified by structural 
formulas and numbers (amu). 
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anide and ammonia, together with the sol- 
vent, were removed in vacuo (14), leaving a 
brown residue, which was hydrolyzed (6N 
HICI) and lyophilized, and then converted 
to N-trifluoroacetyl n-butyl esters (TAB 
derivatives) for analysis by combined gas 
chromatography-mass spectrometry (15, 
16). Protein amino acids detected (in 
micromoles per gram) included glycine 
(10,600), alanine (1,550), valine (20), as- 
partic acid (250), and glutamic acid (70), 
all with considerable '3C incorporation. 
Also present were about 30 other com- 

pounds including the nonprotein amino 
acids d-alanine (100), diaminosuccinic acid 
(200), and a-aminobutyric acid (400). The 
distribution of labeled carbon for each 
amino acid was calculated (17) from the 
peak ratios of relevant fragment ions ob- 
tained from their mass spectra. A repre- 
sentative mass spectrum for the aspartic 
acid product is shown in Fig. 2, compared 
with a standard spectrum. Results for the 
eight observed amino acids are summa- 
rized in Table 1. 

Under the conditions used, polymeriza- 
tion of hydrogen cyanide was not a pre- 
dominant process since little or no fully la- 
beled amino acids with side chains could be 
detected. Instead, the overall distribution 
of label (13, 14) suggests that extensive 
modification of the nitrile groups of 8 had 
taken place, probably by way of the inter- 
mediates 10, 11, and 12 (18). We conclude 
that hydrogen cyanide and water can con- 
vert poly-a-cyanoglycine 8 (and therefore 
polyaminomalononitrile 4) to heteropoly- 
peptides possessing side chains of today's 
proteins (19), in accord with the hypothesis 
that primitive proteins on the earth origi- 
nated directly from hydrogen cyanide 
polymers rather than by the condensation 
of ca-amino acids. 
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particularly the steps involving the use of HCN as 
a reducing agent, are consistent with these label- 
ing results as well as with the results obtained by 
deuterolysis of 8 with DCl-D20 before and after 
HCN modification. We have found that for the 
amino acids derived from 8 by deuterolysis all hy- 
drogen atoms attached to carbon atoms can be re- 
placed by deuterium. 

19. S. Akabori and M. Yamamoto [in Molecular Evo- 
lution, Prebiological and Biological, D. L. Rohl- 
fing and A. I. Oparin, Eds. (Plenum, New York, 
1972), p. 189] restate Akabori's 1953 proposal that 
the original heteropolypeptides on the earth were 
formed by polymerization of aminoacetonitrile to 
a polyamidine "fore-protein" which was hydro- 
lyzed to polyglycine and then modified by alde- 
hydes, and the like, to heteropolypeptides. We con- 
sider this model improbable because of the insta- 
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The existence of stereospecific opiate 
binding sites in animal brain was discov- 
ered independently about 2 years ago in 
three laboratories, including our own (1, 
2). Since then much has been learned about 
the properties of these binding sites by 
studying opiate binding in membrane prep- 
arations derived from brain homogenate. 
The observed properties are consistent 
with the hypothesis that these sites repre- 
sent pharmacological opiate receptors. 
The exact chemical structure of these re- 

ceptors and many aspects of receptor-drug 
interaction can only be learned when re- 

ceptor molecules are available in soluble 
and highly purified form. As a first step to- 
ward this end we report the solubilization 
of etorphine (3) bound stereospecifically to 
a macromolecular moiety and present data 

suggesting that this moiety may be the 

opiate receptor. 
The brains of Sprague-Dawley rats, af- 

ter removal of the cerebella, were homoge- 
nized and used to prepare mitochondrial- 

synaptosomal (P2) fractions (4). The P2 
fraction, resuspended in 0.32M sucrose, 
was diluted five-fold with 0.05M tris buf- 
fer, pH 7.4, to give the appropriate tissue 
concentration of an osmotically lysed 
membrane preparation. Prior to extraction 
with detergent, the P2 membranes were in- 
cubated with [3H]etorphine at 37?C for 20 
minutes. As described earlier (2, 4), in- 
cubations were carried out in the presence 
of the active narcotic analgesic levorpha- 
nol (10-6M) or in an equal concentration of 
its inactive enantiomorph dextrorphan, in 
order to establish the degree of stereo- 
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bility of aminoacetonitrile and the inertness of 
polyglycine. Diglycine and triglycine reported 
from attempts to polymerize aminoacetonitrile 
most probably were formed instead from eliminat- 
ed hydrogen cyanide (6). We have shown that deu- 
terolysis of 8 with DCI-DO2 yields glycine contain- 
ing two atoms of deuterium per molecule more 
than glycine obtained by deuterolysis of polygly- 
cine. This striking demonstration of the reactivity 
of the a-hydrogen and a-cyano groups of 8 sug- 
gests that its polyamidine analog 4, derived solely 
from HCN, is a far more likely precursor of pro- 
teins than polyglycine or the fore-protein of Aka- 
bori. 
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specificity of the etorphine binding (5). The 
membrane fraction was then centrifuged at 

20,000g for 15 minutes at 4?C. The result- 

ing pellet was resuspended in one-tenth the 

original volume of an ice-cold 1 percent so- 
lution of the nonionic detergent Brij 361 

(Emulsion Engineering, Elk Grove Village, 
Ill.) in 0.01M tris buffer, pH 7.4, contain- 

ing 0.2 mM dithiothreitol and 1 mM 
EDTA (6). This suspension was mixed 

briefly on a Vortex vibrator and immedi- 

ately centrifuged in a Beckman preparative 
ultracentrifuge at 100,000g for 90 minutes. 
Free and bound etorphine in the super- 
natant were separated by passage through 
a column of XAD-4 Amberlite and elution 
with cold 0.05M tris, pH 7.4. Fractions (1 

ml) were collected, and radioactivity was 
determined by counting portions in Aqua- 
sol in a liquid scintillation spectrometer. 
Protein concentration was determined by 
the method of Lowry et al. (7). 

Free [3H]etorphine adheres firmly and 

quantitatively (> 99 percent) to the XAD- 
4 column and can only be eluted with 
methanol or ethanol. Figure 1 shows an- 
other control in which [3H]etorphine was 
added to a Brij extract of P2 membranes 

(we previously ascertained that no binding 
-occurs in the presence of 1 percent Brij). 
When the supernatant from ultracentrifu- 

gation of the extract was passed through a 
column of XAD-4, the bulk of protein 
(> 85 percent) appeared in the void vol- 
ume, while the amount of radioactivity 
eluted was less than 1 percent. 

When [3H]etorphine was first bound to 

P2 membranes in the presence of a 1000- 
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Solubilization of a Stereospecific 

Opiate-Macromolecular Complex from Rat Brain 

Abstract. A [3HIetorphine-macromolecular complex has been solubilized from rat 
brain synaptosomal fraction by extraction with the nonionic detergent Brij 36T. Stereo- 

specificity of binding to this solubilized complex was demonstrated by thefinding that ra- 

dioactivity in the complex was virtually eliminated when binding had occurred in the 

presence of excess levorphanol, an active narcotic analgesic, while it was unaffected by its 
inactive enantiomorph dextrorphan. Bound radioactivity was dissociated by proteolytic 
enzymes, sulJhydryl reagents, and heat, suggesting the presence of protein. The bound 
solubilized macromolecular moiety may be the opiate receptor. 
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