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Phytoplankton are small and usually 
immotile, floating freely in an aquatic hab- 
itat. Their growth rates are determined by 
light, temperature, nutrient concentration, 
and turbulence-environmental conditions 
to which they are subjected by physical 
transport processes. Any spatial patterns 
of phytoplankton abundance are thus a re- 
sult of the interactions between transport 
processes and the differential rates of 
growth of algal populations under different 
physical, chemical, and biological condi- 
tions. Only limited direct control of physi- 
cal location can be exercised by algal cells 
through flagellar locomotion and control 
of buoyancy. 

Theoretical studies of general ecological 
processes (1, 2) and measurements from a 
variety of habitats (3) imply that spatial 
heterogeneity may be critically important 
in regulating community and population 
behavior. Since the epilimnia of lakes are 
extremely isotropic compared to benthic 
or terrestrial habitats, and since the orga- 
nisms are largely unable to control their 
own location by active means, a demon- 
stration that spatial heterogeneity is im- 
portant in phytoplankton associations 
would strongly support the generality of 
this dimension of ecosystem structure. 

Previous workers have sought to ac- 
count for the complex phytoplankton asso- 
ciations observed even in the well-mixed 
layer of pelagic systems. Hutchinson (4) 
characterized the existence of multispecific 
assemblages in such seemingly uniform 
habitats as the "paradox of the plankton" 
and proposed that the temporal variability 
of the physical environment produces di- 
versity. Subsequent investigators have em- 
phasized the importance of spatial hetero- 
geneity in well-mixed turbulent environ- 
ments (2, 5, 6). Phytoplankton populations 
actually are distributed in nonrandom or 
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patchy fashion on moderate scales (7), and 
theoretical relations between patch per- 
sistence, growth rates, intensity of turbu- 
lent transports, nutrient uptake rates, and 
so forth have been investigated (6, 8). In 
situ estimates of phytoplankton biomass 
can now be obtained by continuous flow 
fluorometric analysis of chlorophyll con- 
centration, and this permits a direct com- 
parison of the biological and physical 
structure of pelagic systems (9). 

During the last 2 years we have made a 
detailed survey of various physical and bio- 
logical parameters in Lake Tahoe, Califor- 
nia and Nevada, a large (499-km2), deep 
(maximum depth, 501 min), extremely oli- 
gotrophic lake (10) of considerable interest 
for both basic scientific and management 
research (11). Parameters measured in- 
clude water currents at three depths, tem- 
perature, chlorophyll content, and algal 
species counts. We present some relations 
between the spatial spectra of chlorophyll 
a concentrations measured from a moving 
boat and the spectra of current fluctua- 
tions measured at a stationary meter 
mounted beneath a subsurface buoy. The 
spectra show that the direct effects of tur- 
bulent diffusion dominate biological pro- 
cesses at relatively small scales (less than 
approximately 100 m), but that biological 
processes have greater control of spatial 
distribution at larger scales. 

The interpretation of time series data by 
power spectrum analysis is common in the 
physical (12) and social (13) sciences, but is 
less familiar to aquatic ecologists (9). In 
considering the spectrum of audible noise, 
for example, one might wish to know what 
portion of the sound energy was in a par- 
ticular frequency band, say 2000 to 4000 
hertz. Spectral analysis (14) gives a statis- 
tically acceptable answer to such questions 
for stationary time series. In other exam- 
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ples, it might be used to discover how 
much of the energy in turbulent velocity 
fluctuations is found at low frequencies 
(12), or how much of the variance in 
records of a certain economic indicator is 
due to long-term (low-frequency) fluctua- 
tions (13). 

The chlorophyll data were gathered by 
pumping lake water from a depth of 18 m 
through a hose into a fluorometer (G. K. 
Turner Associates) mounted on a research 
vessel; the hose assembly was towed behind 
the vessel at 1.3 m/sec for a distance of ap- 
proximately 3 km. This in situ method 
measures both chlorophyll and pheophy- 
tin, the concentration of pheophytin in 
Tahoe having been reported to be about 15 
to 25 percent that of chlorophyll a (15). 
During these measurements the phyto- 
plankton association in Lake Tahoe was 
dominated by a small, nonmotile diatom, 
Cyclotella stelligera. The chlorophyll sig- 
nal was digitized, stored on magnetic tape, 
and analyzed for its spectral content with a 
fast fourier transform algorithm (16). 

The current meter, a savonius rotor with 
eight magnetic reed switch pickups, was 
mounted at a depth of 17 m in Lake 
Tahoe's well-mixed epilimnion. Each revo- 
lution of the turning rotor produces eight 
pulses, and the time between pulses gives a 
measure of the low-frequency fluctuations 
in the magnitude of the horizontal velocity 
field. The current records discussed here 
were taken in midafternoon, when daily 
winds from the southwest of up to 15 
m/sec, a standard feature of the Tahoe ba- 
sin summer climate, drive the surface wa- 
ters at average speeds of up to 10 to 15 cm/ 
sec. At these speeds we estimate that one 
can measure fluctuations of the order of 
0.5 cm/sec with a length constant of ap- 
proximately 2 m. The current spectra were 
also calculated with the fast Fourier trans- 
form algorithm. 

Since the fluctuations in current speed 
(_1.5 to 2 cm/sec) are small compared to 
the average speed (_L10 to 15 cm/sec), the 
chlorophyll and current records can be 
spectrally analyzed using Taylor's "frozen 
turbulence" hypothesis (17) and the 
spectra presented in terms of a wavelength 
(X) or wave number (1/ X). The records dis- 
cussed here are a current record from 27 
September 1973 and a chlorophyll tow 
from 28 September 1973, although virtu- 
ally all of our records show the same major 
characteristics as these. (With time series 
of chlorophyll concentration and current 
speed taken at the same time and place 
correlations and coherence spectra be- 
tween the records could be analyzed, but 
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other experimental requirements and lim- 
its on the data acquisition system did not 
allow simultaneous measurement.) The 
thermocline was at 28 m, so both records 
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Spatial Scales of Current Speed and Phytoplankton Biomass 

Fluctuations in Lake Tahoe 

Abstract. Spectral analysis of current speed and chlorophyll a measurements in Lake 
Tahoe, California and Nevada, indicates that considerably more variance exists at longer 
length scales in chlorophyll than in the current speeds. Increasingly, above scales of ap- 
proximately 100 meters, chlorophyll does not behave as a simple passive contaminant 
distributed by turbulence, which indicates that biological processes contribute signifi- 
cantly to the observed variance at these large length scales. 
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were taken from a well-mixed, unstratified 
portion of the lake with a negligible density 
gradient, and the effects of internal waves 
are negligible. 

Log-log plots of the current and chloro- 
phyll spectra are shown in Fig. 1. In the re- 
gion of wave number greater than 10-4 
cm-' (X < 100 m) both spectra show sim- 
ilar linear forms indicating negative power 
law behavior. The slopes of the linear por- 
tions are approximately - 5/3, Kolmogo- 
rov's prediction for the inertial subrange of 
turbulence (18). Both spectra cut off at 
large wave numbers; at X less than a few 
meters a cutoff is expected in the current 
spectra at the length constant of the sav- 
onius rotor (2 m), while the chlorophyll 
cutoff around 10 m is caused by smearing 
and small-scale mixing in the hose (inner 
diameter, 1.6 cm). For X ? 100 m the 
spectra differ significantly. The chlorophyll 
spectrum shows a statistically significant 
peak at 10-4 cm-' (X = 100 m); this could 
have resulted from towing obliquely 
through a pattern of Langmuir spirals (19), 
where phytoplankton were concentrated in 
downwelling zones, since these regular cir- 
culations have vertical scales of tens of me- 
ters. For X > 100 m the chlorophyll spec- 
trum continues to rise with a steeper slope. 
The current spectrum shows a break in the 
interval 1 x 10-4 to 2 x 10-4 cm-' (X = 50 
to 100 m) and tends to level off at X > 100 
m. The slopes of the two spectra differ con- 
siderably at X > 100 m. Leveling off in the 
spectra of current fluctuations in lakes has 
previously been observed, although the break 
appears at different wavelengths (20). 

We interpret the close resemblance of 
the current speed and chlorophyll spectra 
at scales less than 100 m as indicating that 
turbulence directly governs the distribution 
of organisms from this region down to the 
limits of our measurements. Above about 
100 m the diverging shapes of the spectra 
indicate that different processes c6ntribute 
to the variance of phytoplankton concen- 
tration and momentum (21). The measure- 
ments indicate that above scales of 100 m 
variations in biological processes such as 
cell growth, sinking, and grazing have an 
important effect on the biomass distribu- 
tion. At these larger scales, spatial hetero- 
geneity of the plankton ecosystem becomes 
more likely. The existence of a scale length 
(-100 m) separating one region where a 
physical process dominates from another 
where a biological process dominates is in 
general agreement with theoretical calcu- 
lations (6) and with the observation of vari- 
ations on kilometer scales in phytoplank- 
ton production rates, biomass, and diver- 
sity in Lake Tahoe (22). The largest-scale 
variation in phytoplankton is believed to 
reflect the variation in nutrient content of 
lake waters caused by stream inflow. 
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The precise meaning of the observed dis- 
tribution of chlorophyll in terms of the dis- 
tribution of populations of organisms and 
their processes of growth and death re- 
mains to be explained. The crucial un- 
known is the minimum scale at which spa- 
tial heterogeneity can result in differential 
variation in species abundances and hence 
niche diversity. Phytoplankton enumera- 
tions made in conjunction with the work 
described here have been discussed else- 
where (23). The contribution of spatial pat- 
terns to the dynamics of population behav- 
ior complicates understanding of commu- 
nity processes, perhaps in most habitats. 
Theories based on conservation laws for 
energy and momentum lead to simple pre- 
dictions about the spectral distribution of 
energy or temperature fluctuations, which 
are obeyed in a variety of laboratory and 
geophysical systems (24). A similar ap- 
proach to phytoplankton distributions, 
based on suitably modified conservation 
equations, leads to apparently intractable 
theoretical and field measurement prob- 
lems because many more processes must 
be explicitly taken into account (6). How- 
ever, it may be that relatively few of these 
processes are important. Variable nutrient 
concentrations from inflowing streams and 
differential grazing due to zooplankton 
patchiness are likely to be the most impor- 
tant primary sources of spatial hetero- 
geneity in lacustrine plankton systems. 
Zooplankton will be important only in 
moderately eutrophic systems (25). The re- 
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Fig. 1. Log-log plots of the spectra of chloro- 
phyll a variance and current speed fluctuations 
against inverse wavelength; a wavelength scale is 
also shown. The error bars indicate 80 percent 
confidence limits. Both spectra would follow the 
dashed line with slope - 5/3 if the current speed 
fluctuations were in the inertial subrange of tur- 
bulence (18) and chlorophyll a were a passive 
contaminant with sources of variance at very 
large length scales. 

sponse of phytoplankton populations to 
the primary sources of heterogeneity is 
probably a function of two factors: mixing 
intensity, which is governed by lake size 
and external weather conditions, and the 
turnover rate of populations, which affects 
their ability to respond to ephemeral spa- 
tial patterns. Important environmental pa- 
rameters may be fewer and more easily 
measured in plankton systems than in 
most habitats, and the degree of hysteresis 
may be lower because of the short life 
spans of phytoplankton. Thus plankton 
systems may be the best available for ex- 
amining the role of spatial heterogeneity in 
ecological processes. Recent advances in 
algal physiological ecology are the logical 
complement to the structural studies de- 
scribed here for the empirical description 
of competition interactions among phyto- 
plankton (26). THOMAS M. POWELL 
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During recent years a number of proce- 
dures have been devised to induce cross- 
bands, now known as G bands, of meta- 
phase chromosomes. These procedures in- 
clude treating fixed metaphase chromo- 
somes with proteolytic enzymes, alkylating 
agents, protein denaturants, phosphate 
buffer at high temperature, and many oth- 
ers. The G bands are extremely useful in 
identification of individual chromosomes 
and their arrangements, but the mecha- 
nism by which G bands are induced re- 
mains controversial. It has been suggested 
that alterations of protein-DNA relation- 
ships allow the Giemsa mixture to differ- 
entially stain specific regions on the 
chromosomes (1-3). Whether histones or 
acidic proteins (or both) are involved re- 
mains unclear (1, 2). We present cy- 
tochemical data to show that the histone 
fractions fl and f2a are at least partially 
responsible for the induction of G bands, 
whereas the f2b and f3 fractions are not in- 
volved. 
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The Chinese hamster fibroblast line Don 
and the cells of the cactus mouse, Per- 
omyscus eremicus, were grown as mono- 
layers in McCoy's 5a medium with 20 per- 
cent fetal calf serum. Cells were fixed in 
Carnoy's mixture (methanol and acetic 
acid, 3:1), placed on slides by the air- 
dried technique, and G bands induced with 
trypsin (4). After treatment with trypsin a 
few slides were stained with Giemsa to en- 
sure that G band induction was properly 
done. The various histone fractions (Sig- 
ma) and cytochrome c (Sigma) were dis- 
solved in 5 mM MgCl2 and 50 mM tris- 
HC1, pH 7.5, at a concentration of 0.1 
or 1 mg/ml. Calf thymus DNA, either na- 
tive or heat denatured, was dissolved in the 
above buffer at a concentration of 1 mg/ 
ml. Half of a trypsin G banded slide was 
treated with the solution containing one of 
the above proteins or DNA, while the oth- 
er half was treated with only the buffer. 
The slides were incubated at room temper- 
ature for either 5 or 20 minutes, and 
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treated by one of the following methods 
prior to staining with Giemsa: (i) rinsed, 
(ii) trypsinized, or (iii) fixed in methanol 
and acetic acid (3: 1) or 0.2N HC1 for 30 
minutes. 

The responses of all chromosomes in 
each experiment were the same, but for the 
sake of simplicity, we chose to use only the 
Chinese hamster chromosome 2 to illus- 
trate the staining behavior. In all slides, 
control sections showed typical G banding 
(Fig. 1A). When the trypsin-treated sec- 
tion was incubated with the lysine-rich his- 
tone fraction, fl, at a concentration of 0.1 

mg/ml, G bands were preserved when the 
preparation was stained with Giemsa (Fig. 
iB). However, when similar slides were 
treated with fl at 1 mg/ml, not only the G 
bands disappeared, but the chromosomes 
did not take up stain at all, giving a ghost 
chromosome appearance (Fig. 1C). The 
slightly lysine-rich fraction, f2a, showed 
similar behavior, that is, G bands were not 
blocked at a concentration of 0.1 mg/ml 
(Fig. 1D), but were completely obliterated 
at 1 mg/ml (Fig. IE). Unlike fl, the 
chromosomes incubated with f2a did not 
give a ghostlike appearance although they 
were not intensively stained. No demon- 
strable reaction was noticed when the 
slightly lysine-rich fraction, f2b, and the 
arginine-rich fraction, f3, were used for 
incubation at either of the concentrations 
and durations used in our experiments 
(Fig. 1, F and G, respectively). As controls 
we used the basic protein cytochrome c 
(Fig. 1H) and the neutral protein egg albu- 
min (not shown). Neither showed any ef- 
fect on the appearance of G bands. Dena- 
tured and native DNA were also ineffec- 
tive in blocking the G banding. 

Our data suggested that the fl and f2a 
histone fractions may be involved in the 
production of G banding of the chromo- 
somes, but each appeared to have a differ- 
ent mode of operation. The fl histone com- 
pletely blocks the staining of the chromo- 
somes, whereas f2a does not. In another set 
of experiments, we used air-dried slides 
without first subjecting them to trypsin 
treatment, and treated them with either fl 
or f2a, and then stained with Giemsa. The 
fl histone here inhibited Giemsa staining 
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Fig. 1. G banding pattern of chromosome 2 of Chinese hamster fibroblast 
after treatment with trypsin followed by the protein at the noted concen- 
trations for 5 minutes and finally stained with Giemsa. (A) Control (no 
protein); (B) fl, 0.1 mg/ml; (C) fl, 1 mg/ml, (D) f2a, 0.1 mg/ml; (E) f2a, 
1 mg/ml; (F) f2b, 1 mg/ml; (G) f3, 1 mg/ml; (H) cytochrome c, I mg/ml. 
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Mechanism of Chromosomal G Banding 

Abstract. Cytochemical data are presented to show that the histone fractions fl and 
f2a are involved in the induction of chromosomal G bands, whereas the f2b and f3 frac- 
tions are not involved. Removal of the fl and f2a fractions probably occurs during fix- 
ation and is necessary for the induction of G bands. 
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