
ultrasonograms made by glass plate (I) or 
digital technique became light-opaque at 
high information densities (2) (Fig. 2). 

Although acoustic holographic systems 
in theory produce a three-dimensional im- 
age, in practice it is possible to observe 
only a single plane at a time in the focal 
zone. In addition, the quality of the image 
produced by acoustic holography is poorer 
than that produced by pulse echo systems. 
The higher acoustic energies used by these 
instruments is also undesirable (3). 

For these reasons, optical holographic 
reconstruction of pulse echo ultrasono- 
grams was chosen over acoustic holog- 
raphy for three-dimensional ultrasonog- 
raphy. 

Ultrasound mammography is carried 
out by serially sectioning the breast in a 
vertical direction at 3-mm intervals (Fig. 
3). Figure 4 illustrates the preparation of 
an optical hologram of the three-dimen- 
sional ultrasonogram. Ultrasonogram A is 
placed in position A on Fig. 4, and the film 
is placed at plane A'. An optical hologram 
of ultrasonogram A is taken. Ultrasono- 
gram B is now placed in position B and the 
same film is moved to plane B'. A second 
optical hologram of ultrasonogram B is re- 
corded on the same film, thus producing a 
superimposition optical hologram of Fig. 
4, A and B. In a similar fashion, ultrasono- 
gram C is placed in position C and the 
same film is moved to plane C'. By this 
method the superimposition hologram 
shown in Fig. 5 has been prepared (4). 

When the resulting optical hologram is 
viewed with a laser light beam, a three-di- 
mensional image of the organ is observed. 
Figure 5 illustrates the ability of the opti- 
cal hologram to cause a cyst to stand out, 
with simultaneous display of the fine breast 
structure. Since this is a flat photograph, 
the observer loses the three-dimensional 
effect which is present when the hologram 
is viewed under laser light. Further im- 
provements in the ultrasonic images may 
also be obtained by optical deblurring and 
data processing of ultrasound mammo- 
grams prior to the formation of an optical 
hologram. 

The methods outlined are applicable to 
the study of all organs that can be serially 
scanned and represent a unique way of 
studying organs in three dimensions. For 
ultrasound mammography in particular, it 
holds the promise of improved detection, 
localization, and differential diagnosis be- 
cause this mode of display facilitates inter- 
pretation by making it possible to trace the 
course of ducts, blood vessels, fascial 
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rig. 3. ne internal structure o0 the breast is vi- 
sualized in three dimensions when the optical 
hologram is viewed in laser light. The optical 
hologram causes the cyst within this breast to 
stand out. The fine structures of the breast are 
simultaneously displayed. 

has been applied to ultrasound mammog- 
raphy. Its use reduces the volume of ultra- 
sonic data and permits the visualization of 
organ structure in three dimensions with- 
out superimposition and shadowing. This 
major advance in ultrasonic imagery may 
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Rivers contain approximately two or- 
ders of magnitude more dissolved silica 
than does surface ocean water. The fact 
that this transition from silica-rich to sili- 
ca-poor water often takes place abruptly in 
coastal estuaries is most easily explained 
by conservative dilution of river effluent by 
ocean water (1-3). Uptake of silica by clay 
minerals may be important in the global 
chemical budget (4), but evidence for 
chemical removal in estuaries is lacking 
(5). Biological uptake of silica has not been 
confirmed in any major estuary (6), al- 
though opaline diatoms often are common 
in estuarine waters. For instance, diatom 
populations in the brackish surface waters 
off the Amazon River exceed 1 to 4 mg/li- 
ter (7), a sufficiently large quantity to af- 
fect the silica concentration. The signifi- 
cance of this process can be appreciated 
when one considers that the Amazon con- 
tributes approximately 40 percent of the 
dissolved silica brought into the Atlantic 
Ocean (8). 

During a recent cruise of the R.V. Chain 
(10 to 18 June 1974) we studied further the 
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possible interactions between diatom pro- 
duction and uptake of dissolved silica in the 
Amazon estuary. Samples for salinity, sus- 
pended matter, dissolved silica, and other 
chemical parameters were taken at closely 
spaced intervals while the ship was car- 
rying out geophysical studies in the area; 
additional samples were collected at four 
hydrographic stations and from the tops of 
two gravity cores. In total, more than 120 
suspended matter and 60 silica samples 
were taken (Fig. 1) and analyzed (9). 

The Amazonian rainy season (February 
through June) was unusually wet in 1974, 
and during the period of observation winds 
were unusually low (often less than 3 m/ 
sec). As a result, the Amazon River ef- 
fluent (defined by the 10 per mil isohaline) 
extended more than 200 km offshore (Fig. 
1). Because of the lack of mixing, however, 
the freshwater lens was very thin, and on 
the inner shelf near-bottom salinities (at 5 
to 7 m) ranged from 14 to 19 per mil. 

Surface waters near the mouth of the 
river contained more than 140 mg of sus- 
pended matter per liter, mostly terrigenous 
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Biological Uptake of Dissolved Silica in the 
Amazon River Estuary 

Abstract. Approximately 25 percent of the dissolved silica carried by the A mazon Riv- 
er is depleted through diatom production in the inner estuary. Annual production of opa- 
line frustules is estimated to be 15 million tons. However, few diatoms accumulate in 
modern shelf sediments and chemical recycling appears to be slight. Instead, many frus- 
tules apparently are transported landward into the river system, where they deposit in 
dunes and layers on and within mud and sand bars. 
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grains. Seaward, however, concentrations 
decreased markedly, even though salinities 
increased only slightly; at 0.5 per mil terri- 
genous suspensions averaged 20 mg/liter, 
and at 1.5 per mil concentrations were less 
than 8 mg/liter (Fig. 2B). Between salini- 
ties of 1.5 and 4.0 per mil terrigenous con- 
tent remained relatively constant, but it de- 
creased sharply as salinity increased fur- 
ther. At 6 per mil the surface waters con- 
tained less than 0.5 mg of terrigenous 
grains per liter, and at 10 per mil concen- 
trations were less than 0.05 mg/liter (Fig. 
2B). This two-step decrease in terrigenous 
grain concentration could indicate two dis- 
tinct types of deposition (10), one caused 
by the decrease in vertical turbulence as 
the river widens onto the shelf and the oth- 
er by flocculation or agglomeration of clay 
particles (11). 

Combustible particulate organic matter 
decreased gradually with increasing salini- 
ty and constituted the major component 
across most of the shelf (Fig. 2B). Diatom 
frustules were uncommon in the river wa- 
ter, but increased markedly at about 3 per 
mil (probably in response to increased 

clarity of surface waters due to deposition 
of terrigenous grains) and exceeded 2 mg/ 
liter at about 5 per mil; the dominant spe- 
cies was Coscinodiscus lineatus. Diatom 
populations decreased at higher salinities, 
although they remained the dominant non- 
combustible suspended component (12) 
(Fig. 2B). 

The marked increase in diatom concen- 
tration in surface waters was reflected by 
the decrease in dissolved silica. Between 
salinities of 0 and 3 per mil, silica concen- 
tration followed a predicted dilution curve, 
while most silica values in surface waters 
with salinities greater than 8 per mil fol- 
lowed a lower dilution curve (Fig. 2A). In 
contrast to observations from other es- 
tuaries, these two linear dilution curves are 
separated by a gap of approximately 30 
,mole/liter, undoubtedly related to silica 
uptake by the production.of diatom frus- 
tules. Assuming that opaline frustules con- 
tain 60 percent SiO2, 30 zmole of SiO2 
would produce 3 mg of diatom frustules 
per liter, which agrees closely with our ob- 
servations of suspended matter. 

The utilization of 30 umole of SiO2 per 

liter would amount to an annual produc- 
tion of more than 15 million tons of diato- 
maceous sediment within the Amazon es- 
tuary. However, little of this material ap- 
pears to be preserved within shelf sedi- 
ments, even though low rates of modern 
sedimentation on the Amazon shelf (13) 
should preclude the masking of diatoms by 
terrigenous grains. Our data indicate no 
recycling of the frustules within the water 
column. Many silica concentrations in the 
subsurface waters follow the river-ocean 
dilution curve, while others coincide with 
the lower curve in Fig. 2A. The higher val- 
ues most likely represent subsurface mix- 
ing of Amazon River water and ocean wa- 
ter; the absence of silica uptake in these 
subsurface waters is reasonable since the 
low level of light penetration would severe- 
ly restrict the production of phytoplankton 
(14). Diatoms that do reach the bottom 
may dissolve at or near the sediment-water 
interface, as SiO2 concentrations in these 
waters are significantly enriched (Fig. 2A); 
however, silica released from clay mineral 
diagenesis also could cause such values. 

Therefore, most frustules must be trans- 
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ported northward by longshore currents 
(13) or landward by currents within the tid- 
al wedge (15, 16). It is difficult to estimate 
the quantity of frustules deposited along 
the northern coast since they are effec- 
tively masked by the large terrigenous load 
accumulating in these nearshore areas 
(13). However, a large portion of the frus- 
tules apparently is transported landward 
into the estuary: marine diatoms are com- 
mon in the lower reaches of the Amazon 
River (15), and banks and bars off Marajo 
Island contain prominent dunes and inter- 
bedded layers of diatomite (17). If similar 
processes occur in other major estuaries, 
the actual amount of dissolved silica reach- 
ing the ocean may be considerably less 
than previously estimated. 
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aragonite on a time scale of months. 

The mineralogy and elemental composi- 
tion of carbonate skeletons deposited by 
scleractinian corals have been examined by 
many workers (1, 2). Aragonite has been 
the only primary skeletal mineral thus far 
reported. 

The diagenesis of metastable aragonite 
to low-magnesium calcite has also received 
much attention (2, 3). The results of these 
investigations show that under normal 
conditions in seawater the recrystallization 
is extremely slow, and skeletal aragonites 
of Pleistocene and older ages are not un- 
common. We report here the discovery of 
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Table 1. Age, percentage of calcite, and magne- 
sium/calcium ratio in samples from two coral 
specimens (see Figs. 1 and 2); NA, no analysis. 

Estimated Mg/Ca atom age of 
Sample age ratio (x 103) calcite 

(years) (? 8%) ( 5%) 

CI-l 0.3 NA 20 
CI-2 0.7 4.3 17 
C1-3 1.2 4.8 18 
C 1-4 1.8 4.2 22 
C1-5 2.2 5.0 22 
C1-6 2.8 5.1 27 
C 1-7 3.2 5.5 35 
C1-8 3.8 5.5 39 
C 1-9 4.3 6.2 23 
C1-10 4.8 6.2 46 
Cl-l 1 5.2 5.6 37 
C1-12 5.8 4.8 26 
C1-13 6.1 4.5 26 
C1-14 6.3 3.6 6 
C3-1 1.6 * 33 
C3-2 4.8 * 26 
C3-3 6.3 * 3 
C3-4 ? t 4 
*Calcite fraction Mg/Ca, < 4 x 10-2; no bulk analy- 
sis. tCalcite fraction Mg/Ca, 16 x 10-2; no bulk 
analysis. 
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skeletal low-magnesium calcite in living 
scleractinian corals. 

The primary study specimens were colo- 
nies of Porites lobata collected live from 
Waikiki reef off leeward Oahu, approxi- 
mately 300 m offshore in 3 to 4 m of water. 
A variety of other archive specimens col- 
lected from various locations in the Pacific 
over the past 3 years were also surveyed. 

X-radiography of slabs cut parallel to 
the axis of growth showed the usual sea- 
sonal density bands (4). Samples were tak- 
en from known locations in the alternating 
high- and low-density growth bands, from 
which the time of deposition of the carbo- 
nate could be estimated (see Fig. 1). 

We carried out x-ray diffraction studies 
with an x-ray diffractometer (Norelco), us- 
ing copper Ka radiation. All major arago- 
nite and calcite peaks with d-values be- 
tween 1.54 and 4.44 A were identified. 
Samples were prepared, ground, and 
mounted by a variety of techniques (5), and 
control samples of known mineralogy were 
included in the study in order to eliminate 
the possibility of procedural artifacts. We 
calculated the percentage composition us- 
ing the aragonite peaks with d-values of 
3.27 and 3.40 A and the calcite peak with a 
d-value of 3.03 A. The calculated percent- 
ages agree with published calibrations (6). 

Elemental analysis for strontium, cal- 
cium, and magnesium was carried out with 
an atomic absorption spectrophotometer 
(Perkin-Elmer model 303). In addition, the 
magnesium concentration in the calcite 
phase was estimated from the shift in the 
d-value of calcite parallel to its major 
cleavage (7). 

Fresh, untreated fracture surfaces of the 
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Skeletal Low-Magnesium Calcite in Living Scleractinian Corals 

Abstract. The skeletons of living specimens of the scleractinian coral Porites lobata 
have been found to contain up to 46 ? 5 percent low-magnesium calcite even though free 
of gross detrital inclusions and boring or encrusting organisms. The calcite crystals occur 
in the interior of skeletal structures, have dimensions of 20 micrometers or less, and are 
surrounded by typical aragonite needles. Biogenic deposition seems to be the most likely 
source of the calcite, although the evidence does not rule out diagenesis of metastable 
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