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X-ray emission spectroscopy, induced 
either by incident x-rays of higher energy 
(fluorescence) or by bombardment with 
charged particles, has been used as a tool 
for the detection of extremely small quan- 
tities (as little as 1012 g) of particular 
chemical elements (1-3). Protons of 
energies ~ 2 to 4 Mev are particularly ef- 
fective, combining large x-ray production 
cross sections with small x-ray back- 
grounds [the dominant x-ray background 
coming from proton bremsstrahlung and 
secondary-electron bremsstrahlung (4)]; 
indeed, the method is so sensitive to trace 
concentrations that the difficulty of pre- 
paring sufficiently pure substrate materials 
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often poses a practical limitation (2). 
Roughly speaking, concentrations of the 
order of 1 part in 106 or 107 are detectable 
in reasonably short times, as compared 
with limiting concentrations of 1 part in 
102 for (continuum) x-ray-induced fluores- 
cence and 1 part in 103 for the electron mi- 
croprobe (4, 5). 

Unlike neutron activation, x-ray emis- 
sion is immediate, and so it is possible to 
use a scanning point source to produce x- 
ray emission pictures or micrographs. This 
has been done with electrons [the "scan- 
ning electron microprobe" (6)], with x-rays 
[both conventional x-ray sources (7) and 
collimated synchrotron radiation (8) have 
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Fig. 1. X-ray energy spec- 
trum from a silicon wafer 
doped with 60 ppm of arse- 
nic. The aluminum x-rays 
are produced by fluores- 
cence from silicon x-rays in 
an aluminum foil covering 
the detector; atmospheric 
krypton, as well as metallic 
impurities, are also clearly 
visible. 
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Fig. 2. (a) X-ray energy spectrum of a sample of hair from a hu- 
man subject who had ingested grain treated with methylmer- 
cury, when irradiated with protons as in Fig. 1. The concentra- 
tion of mercury is roughly 100 ppm. (b) The high-energy portion 
of the spectrum for a succession of positions along the hair. Con- 
tinued proton irradiation, even for periods of up to an hour, did 
not reduce the observed mercury x-ray line. 
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Scanning Proton-Induced X-ray Microspectrometry 
in an Atmospheric Environment 

Abstract. Collimated million-electron-volt proton beams, brought out into air, can be 
used as a scanning microprobe to examine specimens with a spatial resolution of the or- 
der of I micrometer. Trace elements at concentrations as low as 1 part per million can be 
detected. Some preliminary results based on the use of this simple method are presented. 
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Fig. 3. Low-resolution micro- 
graphs of inclusions in a sample 
of sphalerite (ZnS). (a) Appear- 
ance in visible light. (b) Iron x- 
ray, showing iron pyrites (sul- 
fides of iron). (c) Zinc x-ray, 
showing sphalerite matrix. (d) 
Calcium x-ray, showing "blebs" 
which appear dark in both the 
zinc and iron pictures. (e) Sili- 
con x-ray, showing another kind 
of "bleb." Each micrograph 
represents an exposure of about 
5 minutes and has a spatial resolution of about 150 pm (determined by the pinhole diameter). 

been used], and, most recently, with an 
electromagnetically focused proton beam 
(9). 

With the exception of x-ray--induced flu- 
orescence, the above techniques have been 
carried out in vacuo. For specimens of bio- 
logical interest and for general conve- 
nience, it would be highly desirable to op- 
erate in an atmospheric environment. Can 
this be done with protons? We have investi- 
gated this problem and find no fundamen- 
tal difficulties. The simplest technique 
would be to collimate an emergent proton 
beam by means of a pinhole; the resultant 
pencil beam strikes a sample, scanned me- 
chanically in a raster pattern in a plane 
perpendicular to the beam. X-ray emission 
as a function of time (not position), as 
detected by energy-dispersive detectors 

a 

[Si(Li), for example], is used to construct a 
picture of the distribution of each chemical 
element, most simply by intensifying the 
trace of an oscilloscope whose X and Y de- 
flections follow the sample's motion. [This 
is very similar to the technique used in (8), 
where a schematic diagram and further de- 
tail may be found.] 

For proton energies of 2 to 4 Mev, opti- 
mum for trace element detection (4), pro- 
tons emerge easily through thin windows 
and have ranges of about 100 um in bio- 
logical tissues (which allows sections as 
thick as ; 10 um to be examined). Pin- 
holes fabricated in metals 50 to 100 um 
thick form completely effective collima- 
tors, and reasonable air or helium paths 
contribute negligible attenuation to both 
proton beam and emitted x-rays. Expected 

Fig. 4. Comparison mi- 
crographs of the sphaler- 
ite sample, at higher 
magnification, showing 
the improvement ob- 
tained with the use of a 
25- m pinhole (right) 
compared with the larger 
pinhole (left) as used in 
Fig. 3. (a) Zinc x-ray. (b) 
Iron x-ray. 

b 

count rates, for realistic proton beam in- 
tensities, allow detection of concentrations 
between 1 part in 104 and 1 part in 106 over 
spatial distributions of several microme- 
ters in size (10). The most serious problem 
is multiple scattering of the collimated 
proton beam, both in the sample and in the 
air path from pinhole to sample. Calcu- 
lations of this effect indicate that, for speci- 
mens much thinner than 100 um, resolu- 
tion approaching 1 um is attainable (11). 
Pinholes of this size have been fabricated 
(8) and would pass sufficient beam cur- 
rent, given a realistic incident proton in- 
tensity (100 Aa/mm2). Thus element-dis- 
criminating micrographs can be made of 
specimens up to ; 10 pm thick, with the 
entire thickness imaged in focus at 1-pm 
resolution. Furthermore, the depth of field 
at this resolution is enormous by the stan- 
dards of ordinary microscopy-roughly 
1000 fm. Resolution significantly higher 
than 1 um would require operation in vac- 
uo, electromagnetic focusing methods, and 
much thinner specimen sections. 

We have carried out some preliminary 
experiments with an emergent proton 
beam from the Lincoln Laboratory Van de 
Graaff accelerator. Figure 1 shows an x- 
ray spectrum obtained, after 10 minutes of 
counting, from a silicon wafer doped with 
60 parts per million (ppm) of arsenic and 
bombarded with 100 na of 2-Mev protons 
in a helium environment; from the ob- 
served arsenic K x-ray peak, one can calcu- 
late that an arsenic concentration of 1 part 
in 107 would be detectable under the same 
conditions, yielding a peak 5 standard de- 
viations above background. A similar un- 
doped silicon wafer showed no arsenic 
peak whatsoever. This observed sensitivity 
is close to the theoretical limit for detect- 
ability in vacuo (4); in other words, no sen- 
sitivity is lost by operating in a helium at- 
mosphere. 

An interesting application of this tech- 
nique is to examine human hair, making a 
one-dimensional scan along the fiber, in or- 
der to map out the chronology of heavy- 
metal poisoning, for example. Figure 2 
shows the result of an analysis of a sample 
of hair obtained from an Iraqi who had in- 
gested seed grain treated with methylmer- 
cury (as a fungicide). The whole spectrum 
(Fig. 2a) shows many lines, including a 
strong mercury line and a nearby zinc line. 
The high-energy portion of the spectrum 
(Fig. 2b) is shown for points progressively 
closer to the scalp; comparison with the 
zinc line, presumably constant in intensity, 
shows monotonically decreasing amounts 
of mercury since the last haircut (in agree- 
ment with chemical analysis of the same 
specimen), before which ingestion took 
place. The specimen was in a helium atmo- 
sphere for these spectra. 

Figure 3a shows a geochemical appli- 
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cation-a two-dimensional scan of a piece 
of sphalerite (ZnS) containing inclusions 
of iron pyrites (sulfides of iron). An XY 
stage driven by a stepping motor moved 
the sample in a raster pattern past the sta- 
tionary pinhole. The iron picture (Fig. 3b) 
and zinc picture (Fig. 3c) account for most 
of the specimen, but occasional dark spots 
in both aroused our curiosity; spectra at 
those points identified two different kinds 
of "blebs," one rich in calcium (Fig. 3d) 
and the other rich in silicon (Fig. 3e). 
These pictures were taken in air, which has 
the additional advantages of preventing 
sample charging, owing to the ionized dis- 
charge path along the proton beam, as well 
as of allowing cooling of the sample by 
convection from the surface. [Air has the 
disadvantage of showing a strong argon 
line, and, at a much lower level, a krypton 
line (1.1 ppm in air). The ability to see 
these natural constituents gives some idea 
of the sensitivity of this technique. A heli- 
um environment eliminates these lines, of 
course, and, in addition, reduces multiple 
scattering and attenuation.] 

The results so far have been obtained 
with a crude experimental arrangement-a 
low beam current (1 to 100 pa), large pin- 
holes, and a small detector. Some idea of 
the improvement possible with smaller pin- 
holes is shown in Fig. 4, the sphalerite 
specimen at higher magnification. The 
smaller pinhole (25 4m in diameter) yields 
considerably better resolution, at the ex- 
pense of signal. By using a smaller pinhole, 
some electromagnetic prefocusing, higher 
beam intensities, along with computerized 
data-taking and the techniques of image 
enhancement, we expect to improve the 
microscope's capabilities, reaching a reso- 
lution of < 1 t,m. 

Owing to its properties of (i) operation 
in an atmospheric environment, (ii) rela- 
tively high penetrating power, and (iii) 
chemical element discrimination, even of 
adjacent elements in the periodic table at 
extremely low concentrations, the scanning 
proton microprobe would appear to have 
applications in many disciplines but most 
particularly in the biological sciences. Mi- 
croscopy of hydrated or even live speci- 
mens is possible; alternatively, the speci- 
men could be frozen or maintained in an 
atmosphere saturated with water vapor to 
prevent drying of thin specimens during 
exposure. Very little preparation is 
needed-it is not necessary to stain the 
specimen or to produce thin sections-and, 
because of the good penetration, with con- 
sequent large depth of field, it is possible to 
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applications in many disciplines but most 
particularly in the biological sciences. Mi- 
croscopy of hydrated or even live speci- 
mens is possible; alternatively, the speci- 
men could be frozen or maintained in an 
atmosphere saturated with water vapor to 
prevent drying of thin specimens during 
exposure. Very little preparation is 
needed-it is not necessary to stain the 
specimen or to produce thin sections-and, 
because of the good penetration, with con- 
sequent large depth of field, it is possible to 
make in-focus micrographs of the same 
object viewed at two angles, with sub- 
sequent stereoscopic interpretation. The 
range of possible applications, several of 
which are now being pursued, includes en- 
vironmental studies (distribution of con- 
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taminants in microorganisms); human bio- 
chemical assays (for example, in hair) in 
subjects both living and dead (mum- 
mies); solid-state studies (junctions, micro- 
crystals, and the like); cell biology; and 
metallurgy. The availability of about 100 
proton accelerators in this country alone, 
capable of producing 2- to 4-Mev beams of 
sufficient intensity (> 10 ua/mm2), should 
make this extremely simple technique at- 
tractive for research in a variety of dis- 
ciplines. 
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It has been suggested in recent years 
that the hydroxyl radical (HO) is a major 
driving force in the chemistry of the atmo- 
sphere. It sustains photochemical chain re- 
actions which determine the chemical 
transformation of numerous trace con- 
stituents of urban (1) and natural atmo- 
spheres (2). A measurement of the HO 
concentration in the atmosphere could 
provide a vital new insight into the under- 
standing of photochemical smog as well as 
a better quantitative basis for the assess- 
ment of the impact of man-made chemical 
emissions on a global scale. 

The HO concentration has been esti- 
mated from considerations of the global 
balance of CO (3) and from photochemical 
considerations of reactions operative in the 
troposphere (4). It has been measured in 
the stratosphere by observing the fluores- 
cence of HO excited by the solar radiation 
(5). However, this technique cannot be 
used for HO measurements at lower alti- 
tudes because of the reduced fluorescence 
efficiency and the multitude of inter- 
ferences present there. Very recently, a 
measurement of HO concentration at 
ground level has been made by means of 
laser-induced fluorescence (6). We report 
here on the HO concentration in the open 
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air measured by means of this technique. 
Detection scheme. The technique of laser- 

induced fluorescence for HO measure- 
ments involves the excitation of HO radi- 
cals from the ground electronic state to the 
first excited electronic state and the detec- 
tion of the resulting fluorescence emitted 
by the excited HO. At ambient temper- 
atures, most of the population resides in 
the lowest two rotational levels of the 
ground state. The excitation used in this 
work was the P,(2) line near 2825.8 A in 
the 2H(v = 0)- 2:+(v = 1) transitions (7, 
8) of HO. The excited HO undergoes very 
fast relaxation under atmospheric condi- 
tions, finds its way into the 2+'(v = 0) 
manifold, and then fluoresces in the 2Z+- 
(v = 0)-- 2H(v = 0) transitions (6, 8). This 
fluorescence is centered around 3090 A, 
with a spectral width of about 30 A. The 
HO concentration is then deduced from 
the fluorescence measurements by the use 
of Eq. 1: 
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n = S(A arF)- n = S(A arF)- (1) (1) 
Here n represents the HO concentration in 
the focal region of excitation; S is the fluo- 
rescence signal; A is a measure of the in- 
tensity of excitation and the detection effi- 
ciency for the particular arrangement em- 
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Abstract. Diurnal variations in the hydroxyl radical concentration of ambient air were 
measuredfor the first time by the technique of laser-induced fluorescence. 
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