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Erythrocyte Receptors for (Plasmodium knowlesi) Malaria: 

Duffy Blood Group Determinants 

Abstract. Duffy blood group negative human erythrocytes (FyFy) are resistant to 
infection by Plasmodium knowlesi, a simian malaria that infects Duffy positive human 
erythrocytes. The P. knowlesi resistance factor, Duffy negative erythrocytes, occurs in 
high frequency in West Africa, where the people are resistant to vivax malaria. This sug- 
gests that Duffy blood group determinants (Fy" or Fyb) may be erythrocyte receptors for 
P. vivax. 
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West Africans (I) and approximately 70 

percent of American blacks (2) are resist- 
ant to infection by Plasmodium vivax, al- 

though they are susceptible to the other 
three species of human malaria. The vivax 
resistance factor completely blocks infec- 

tion; sickle cell trait which decreases mor- 

tality from P. falciparum does not block 
infection (3). The resistance to P. vivax is 
evident after sporozoite induced infection 

(I) or after inoculation of infected erythro- 
cytes (2). Since parasitized erythrocytes 
initiate infection in the recipient without 
an exoerythrocytic cycle, the resistance 
factor must interfere with the merozoite's 

ability to invade erythrocytes or to develop 
once within them. 

In a search for erythrocyte receptors for 
malaria parasites (merozoites) (4), we test- 
ed erythrocytes that lacked various anti- 

genic determinants for susceptibility to in- 
vasion by a simian malaria (P. knowlesi). 
This species invades human erythrocytes in 
culture (5) and infects man (6). Of the 

erythrocytes tested, one type which lacked 

Duffy a and b antigens, Duffy negative 
(FyFy) (7), was resistant to invasion. This 

genotype is present in approximately 90 

percent of West Africans (8); it is extreme- 

ly rare in other racial groups (9) who are 

susceptible to P. vivax. This striking asso- 
ciation suggested that the Duffy negative 
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genotype (FyFy) might be the factor in- 
volved in resistance to P. vivax in West Af- 
ricans and that invasion by P. vivax could 

require a Duffy positive erythrocyte (Fy3 
or Fyb). 

To explore these questions, we studied 
the relation between Duffy blood group de- 
terminants and invasion by P. knowlesi. 
Human erythrocytes were obtained from 
five whites and five blacks, positive for ei- 
ther or both of the Duffy antigens (a and b) 
and from 11 blacks negative for these anti- 

gens. The erythrocytes were washed three 
times with culture medium (10), and mixed 
with P. knowlesi (11) infected rhesus 

erythrocytes that contained primarily 
schizonts. This suspension (5000 human 

erythrocytes and 500 parasitized erythro- 
cytes per cubic millimeter) was added to 
16-mm flat-bottom Linbro tissue culture 
wells (0.5 ml per well) and incubated for 3 
hours at 350C in an atmosphere containing 
2 percent CO2. The merozoite invasion fre- 

quency was determined from Giemsa- 
stained smears prepared from erythrocytes 
in the wells and counted (under code) (5). 
Duffy positive and negative erythrocytes 
were studied at the same time under identi- 
cal conditions. 

The average invasion frequency for Duf- 

fy positive erythrocytes was 80.3 para- 
sitized erythrocytes per 1000 erythrocytes 
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Table 1. The effect of various proteolytic enzymes on Duffy blood group determinants and malaria 
invasion of Duffy positive human erythrocytes. Removal of Duffy blood group determinants is ac- 
companied by reduced invasion by Plasmodium knowlesi. Abbreviation: RBC, erythrocytes. 

Titer Infected? 
RBC Duffyt after{ RBC 

phenotype Enzyme* typing adsorp- per 10,000 
tion RBC 

Fy(a+ b-) None +++ - 610 
Trypsin(l mg/ml) +++ -870 
Chymotrypsin (0.01 mg/ml) +++ 1:1 380 
Chymotrypsin (0.1 mg/ml) - 1:8 46 
Chymotrypsin (1 mg/ml) - 1: 8 17 

Fy(a-b+) None ++ + - 850 
Trypsin(l mg/ml) + + + + - 1110 
Chymotrypsin (0.01 mg/ml) + +++- 840 
Chymotrypsin (0.1 mg/ml) ++++: 1: 78 
Chymotrypsin (1 mg/ml) - 1:8 25 

*See (5) for details of enzymatic treatment. tScoring: + + + +, macroscopic clumps, clear supernatant; + + +, 
macroscopic clumps, slightly reddish supernatant; -, no microscopic clumps. t Antiserum to Duffy antigen was 
absorbed with RBC as follows: three drops of packed erythrocytes which had been washed with 0.85 percent NaCI were mixed with four drops of antiserum to Duffy antigen (titer = 1: 16), and the suspension was incubated for 40 
minutes at 370C. The supernatant was used for Duffy typing with the appropriate Duffy positive erythrocytes. A ti- ter of I : 8 indicates no adsorption of antibody, since mixture with cells caused a 1: 2 dilution of the original antise- rum. ?The counts were the sums of duplicate chambers. At high rates of invasion (> 100 infected RBC per 10,000 RBC), less than 10,000 RBC were counted, and the numbers in the table were estimated. 
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Table 2. The effect of antiserums to Duffy antigen and to Rho (D) antigen on invasion of Duffy posi- 
tive, Rho (D) erythrocytes by Plasmodium knowlesi. Erythrocytes (100,000/mm3 in culture medi- 
um) were incubated with an equal volume of antiserums to Duffy antigens (anti-Fya, 1: 128, Spectra 
Biologics; anti-Fyb, titer 1: 16, American Hospital Supply; anti-Rho (D), Ortho Diagnostic) for 30 
minutes at 37?C. After the cells were washed five times with culture medium, they were incubated 
with parasitized erythrocytes. The invasion ratio was the invasion frequency of antibody treated 
erythrocytes divided by the invasion frequency of untreated erythrocytes. Abbreviation: RBC, 
erythrocytes. 

Invasion* Invasion ratio 

Exp. RBC frequency AntiFy 
No. phenotype in No. phenotype untreatedFy AntiF-Rh, + 

RBC Anti-Fy b 

1 Fy(a+ b-) 960 0.28 0.91 

2 Fy(a+ b-) 40 0.15 0.88 0.80 

Fy(a- b+) 70 1.22 0.82 0.80 
Fy(a+ b+)t 70 0.92 1.08 1.00 

3 Fy(a+ b-) 630 0.21 1.10 0.98 
Fy(a- b+) 730 1.46 1.04 1.18 
Fy(a+ b+)t 570 0.54 1.22 0.48 

* The counts were the sums of duplicate chambers. At high rates of invasion (> 100 infected RBC per 10,000 
RBC), less than 10,000 RBC were counted and the numbers in the table were estimated. The variation in invasion 
frequency between experiments reflects the differences in the quality of the parasites. Invasion frequencies can only 
be compared in the same experiment. t Duffy typing with anti-Fyb: Fy(a+ b+) in experiment 2, macroscopic 
agglutination; Fy(a+ b+) in experiment 3, microscopic agglutination. 

(range, 53 to 99). The invasion rates for the 
three Duffy positive phenotypes, Fy(a+ 
b-, Fy(a- b+), and Fy(a+ b+), were sim- 
ilar. Only 2.2 parasitized erythrocytes per 
1000 erythrocytes (range, 0 to 5) was ob- 
served in Duffy negative erythrocytes. No 
consistent differences ascribable to other 
blood groups were observed between the 

Duffy positive and negative erythrocytes 
(12). One of the 11 Duffy negative donors 
had hemoglobin S. 

The susceptibility of other negative and 
null erythrocytes from the collection of 
frozen cells at the Blood Bank, National 
Institutes of Health Clinical Center, was 
evaluated. Rh null, Lewis (Le a- b-), and 
Lutheran (Lu a- b-) erythrocytes were in- 
vaded normally. Bombay (ABO null), Kell 
null (Ko), and Kidd (Jk a- b-) erythrocytes 
could not be evaluated because the freezing 
process severely damaged the erythrocytes 
(many crenated spheres and lysed erythro- 
cytes), and no fresh cells were available for 

testing. 
We have shown (5) that chymotrypsin 

(> 0.1 mg/ml) and Pronase treated 

erythrocytes were resistant to invasion by 
P. knowlesi merozoites; trypsin had no ef- 
fect on invasion. The loss of susceptibility 
to invasion in these studies was directly 
correlated with enzymatic removal of the 

Duffy blood group determinant from the 

erythrocyte surface (Table 1). 
We measured the parasite invasion fre- 

quency of Duffy positive erythrocytes 
coated with antiserum to Duffy antigens 
(abbreviated anti-Fya and anti-Fyb) (Table 
2). Anti-Fya caused a marked reduction in 
invasion of Fy(a+ b-) erythrocytes while 
it had no effect on Fy(a-b+) erythro- 
cytes. Anti-Fyb had no effect on Fy(a - b+). 
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The lower titer of anti-Fyb (1:16 as 

compared to anti-Fy" (1: 128) may have 
accounted for the failure of anti-Fyb to 
block invasion of Fy(a- b+) erythrocytes. 
Anti-Fya reduced invasion of Fy(a+ b+) 
erythrocytes in experiment 3 but not in ex- 

periment 2 (Table 2). 
The interaction of merozoites with 

erythrocytes was recorded on video tape 
with the use of a low light intensity video 

microscope system (13). This permitted a 
direct comparison between the interaction 
of merozoites with Duffy positive and neg- 
ative erythrocytes. A significant difference 
was apparent. In both cases, following con- 
tact by a merozoite, the erythrocyte was 

markedly deformed. This was followed, in 
the case of Duffy positive erythrocytes, by 
a localized invagination of the erythrocyte 
around the merozoite and the subsequent 
interiorization of the parasite (13). How- 
ever, with Duffy negative erythrocytes, the 
critical second stage in the invasion pro- 
cess, that is, localized invagination of the 

erythrocyte, did not occur; the merozoite 

eventually detached and was capable of in- 

teracting with other erythrocytes. Thus, al- 

though P. knowlesi merozoites can attach 
to and interact with both Duffy positive 
and negative erythrocytes, the complete in- 
vasion process is only possible with Duffy 
positive erythrocytes. One explanation for 
these observations is that two receptors, 
one for attachment and one for interior- 
ization, may be required for the complete 
invasion process and the Duffy blood 

group determinants are receptors for the 
interiorization phase of the interaction. 

These in vitro observations probably ac- 
count for the failure of some blacks to de- 

velop a patent infection after intravenous 

inoculation of P. knowlesi infected blood 
for the then accepted treatment of neu- 
rosyphilis with malaria (6). The resistance 
does not appear to be caused by other 
membrane defects in Duffy negative 
erythrocytes, since destruction of Duffy 
blood group determinants by proteolytic 
enzymes and blocking of the antigen with 
antiserum greatly reduces invasion. Pre- 
sumably each of these affects only the sur- 
face structures, although they also affect 
surface structures other than Duffy blood 
group antigen. 

The resistance of West Africans and 
some American blacks to P. vivax corre- 
sponds to the unique distribution of Duffy 
negative erythrocytes (FyFy) in the world. 
Other African populations with a higher 
incidence of Duffy blood group positive 
erythrocytes (14) could account for the 
presence of P. vivax in East Africa and 
Madagascar. If the Duffy blood group de- 
terminants are the receptors for P. vivax, 
Africans infected with P. vivax should all 
have Duffy positive erythrocytes while 
Duffy negative individuals would be resist- 
ant to challenge by P. vivax. 
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Differentiating retinal ganglion cells un- 
dergo position-dependent diversification, 
acquiring properties (locus specificities) 
that enable each cell's axon to reach its ap- 
propriate locus in the retinotectal map (1, 
2). Such differentiations presumably con- 
tinue to occur throughout tadpole life in 
Xenopus, as new ganglion cells are added 
to the ciliary margin of the growing retina 
(3). Yet, even before the first optic axons 
appear, a developmental program is final- 
ized in the stage 28 to 31 optic cup which 
specifies the permanent anteroposterior 
(AP) and dorsoventral (DV) reference axes 
for positional information (4) in the retinal 
field, and establishes the spatial blueprint 
for patterning of locus specificities across 
the entire future ganglion cell population 
(5). Axial specification occurs in two steps 
(AP first) over 5 hours, and is triggered un- 
der retinal control (6). Before specifica- 
tion, a rotated eye can interact with the ax- 
ial cues of the embryo, rapidly replace its 
labile retinal axes with a new pair of (prop- 
erly aligned) axes (7), and assemble a nor- 
mally oriented retinotectal map from the 
rotated position (7, 8). After specification, 
the stage 31 eye is unaffected by the em- 
bryo's axial cues and, even when grafted in 
rotated orientation into a pre-stage 28 
host, retains its specified axes and assem- 
bles a correspondingly rotated retinotectal 
map (5, 8). 

This developmental program is ex- 
ceedingly stable and was expressed with fi- 
delity when stage 31/32 eyes were sub- 
mitted to a variety of serial transplantation 
procedures, prolonged tissue culture, 
chronic deprivation of tectal connections, 
or temporary suppression of retinal growth 
(5, 9). Likewise, individual stage 31/32 
nasal, temporal, or ventral eye fragments, 
which round up and form morphologically 
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"whole" eyes, are insensitive to the extra- 
ocular microenvironment, and retain (or, 
occasionally, reduplicate) their specified 
axes (10). The first hint of modifiability 
came from surgically constructed eyes, 
formed by fusing specific stage 31/32 eye 
fragments together (11, 12); but without 
knowing which regions of the adult retina 
arose from which fragments of the re- 
combinant eye, inferences about frank 
modification of retinal axes remained spec- 
ulative (2). 

Here we show that when allowed to fuse 
and interact with a right-nasal fragment, a 
left-temporal fragment (subsequently iso- 
lated, allowed to round up, and assayed af- 
ter it has mapped into the tectum alone) 
undergoes a stepwise reprogramming of 
first its AP and then its DV axis. This is the 
first clear evidence for trans-repolarization 
of retinal tissue and for axis reversal after 
the time of specification, and provides an 
assay system for analysis of positional sig- 
naling within the retinal field. Published 
accounts exist for all methods used, includ- 
ing those for staging, surgical manage- 
ment, and rearing of X. laevis clawed frog 
embryos (5); preparation of eye fragments 
and recombinant eyes (10, 11); testing of 
visually guided strike responses of the 
frogs during metamorphosis [to confirm 
the existence of functional synapses be- 
tween the experimental eye and the brain 
(2, 5)]; and electrophysiologic analysis of 
the visual field projection from the experi- 
mental right eye to the left optic tectum, 5 
to 18 weeks after eye surgery, in the juve- 
nile frog (2). 

Four control series were prepared, con- 
current with the experimental series and 
using siblings of the experimental em- 
bryos. Normally oriented retinotectal 
maps (Fig. la) developed in all 11 frogs 
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whose right eye was removed and replaced 
intact in normal orientation at stage 
27 ? 1, 31/32, 38/39, or 43/44. Thus, 
simple surgical intervention at these stages 
did not produce map inversions. Normally 
oriented maps developed in seven frogs af- 
ter grafting a stage 27 : 1 right eye, in 
180?-rotated orientation, into the com- 

pletely vacated right orbit of a stage 
27 i 1 host; but the map was inverted in 
both axes in all eight frogs, after grafting a 

stage 31/32 right eye in 180?-rotated orien- 
tation into the vacated right orbit of a 

stage 27 + 1 host. These controls confirm 
that the stage 31/32 eyes used in our ex- 
periments (since their axes were not modi- 
fied by interaction with host embryos of 

proven competence) had in fact undergone 
axial specification prior to stage 31/32. Fi- 

nally, the retinotectal map was normally 
oriented in the AP axis but inverted in the 
DV axis in all but 11 frogs after grafting a 
stage 31/32 left eye (in AP-normal, DV-in- 
verted orientation) into the vacated right 
orbit of a stage 31/32 host, with no further 

surgery or with subsequent (after 15 to 30 
minutes or after 13 to 14 hours) extirpation 
of its nasal region (see Fig. lb). Thus, the 
retinal axes of a specified left eye are stable 
in left-temporal fragments, isolated in the 
right orbit, and allowed to map into the left 
tectum. Reversal of these axes in the exper- 
imental series (in which the left-temporal 
fragments were similarly isolated after 
contact with a right-nasal fragment) must 
have resulted from interaction with the 
right-nasal fragment. 

In the four experimental series, a (do- 
nor) stage 31/32 left-temporal eye frag- 
ment was apposed to a (host) stage 31/32 
right-nasal fragment, by grafting the donor 
fragment in place of the extirpated tem- 
poral region to the host right eyes. The 
right-nasal (host) fragment was either (i) 
completely removed after 15 to 30 minutes 
(sham fusion); (ii) left undisturbed as part 
of a permanent recombinant eye; (iii) com- 
pletely removed after 13 to 16 hours (host 
stage 39 = 1; 22?C) when the two frag- 
ments were composite halves of a "dumb- 
bell-shaped" eye; or (iv) completely re- 
moved after 30 to 32 hours (host stage 43/ 
44), when the two fragments were no long- 
er visibly discrete but remained easily sep- 
arable by cutting along the fusion scar. 
Nasal extirpations were confirmed histo- 
logically (10). 

The first two experimental series, which 
define the boundary conditions for the time 
of fragment interaction (sham fusion and 
indefinite fusion), gave consistent results: 
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(Fig. lb), identical to those seen in the 
fourth control group; with only minor vari- 
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Neuronal Locus Specificity: Trans-Repolarization of Xenopus 

Embryonic Retina After the Time of Axial Specification 

Abstract. Signaling within an embryonic Xenopus eye comprised of two fused eye frag- 
ments can reprogram, in turn, the anteroposterior and dorsoventral axes of one of the 
fragments. The responding fragment, subsequently isolated and allowed to round up and 
innervate the brain, shows corresponding inversions in its retinotectal map. This is the 
first evidence for trans-repolarization of presumptive retina and provides an assay sys- 
tem for analysis of positional signaling within the retinalfield. 
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