
Analogs of Cyclic Adenosine Monophosphate: Correlation of 

Inhibition of Purkinje Neurons with Protein Kinase Activation 

Abstract. Cyclic adenosine monophosphate (cyclic AMP) and 11 derivatives were ap- 
plied to rat cerebellar Purkinje cells by iontophoresis. Cyclic AMP inhibited 63 percent 
of the cells, while the 8-parachlorophenylthio- and 8-benzylthio- analogs of cyclic AMP 
inhibited the spontaneous firing of 92 and 80 percent of cells, respectively. The ability of 
the 11 analogs to inhibit neuronal firing correlated (r = + .78) with their reported po- 
tency in activating cyclic AMP-dependent protein kinase. These results extend previous 
studies, pointing to the mediation by cyclic AMP of the noradrenergic inhibition of Pur- 
kinje neurons, and provide new physiological evidence that protein phosphorylation is a 
major step in the action of cyclic AMP. 

Adenosine 3',5'-monophosphate (cyclic 
AMP) has been implicated as an intra- 
cellular second messenger of central cate- 
cholaminergic neurotransmission on evi- 
dence from: (i) biochemical studies (1) 
showing catecholamine-evoked elevations 
of cyclic AMP in most brain regions; (ii) 
immunocytochemical studies showing an 
increase of cyclic AMP bound in cerebellar 
Purkinje cells after noradrenergic stimuli 
(2); (iii) electrophysiological studies show- 
ing a modulation of the catecholaminergic 
inhibitions of several neuron types by 
drugs known to interact with the cyclic 
AMP system (3, 4), and a similarity be- 
tween responses to catecholamines and cy- 
clic AMP applied by iontophoresis (4, 5). 

Although cyclic AMP might affect 
membranes directly (6), a major hypothe- 
sis (7) suggests that cyclic AMP acts by 
regulation of protein kinase, which phos- 
phorylates specific brain proteins (8), thus 
altering the biophysical properties of mem- 
branes (9). However, the role of cyclic 
AMP in noradrenergic inhibition has been 
questioned on the grounds that the per- 
centage of cerebellar Purkinje cells de- 
pressed by cyclic AMP does not match the 
high percentage depressed by norepineph- 
rine (10). This difference has been attri- 
buted to technical factors which impede 
iontophoretic release (11, 12) and to the 
necessity for cyclic AMP (a sparingly per- 
meable and enzymatically labile agent) to 
reach intracellular protein kinase (12). Re- 
cently, analogs of cyclic AMP, some of 
which are more potent than cyclic AMP in 
activating brain protein kinase (13, 14), 
have become available (15). We now report 
that analogs of cyclic AMP depress Pur- 
kinje neurons in correlation with their abil- 
ity to activate protein kinase. These find- 
ings further substantiate the concepts that 
protein kinase as well as cyclic AMP are 
involved in noradrenergic neurotransmis- 
sion. 

Eighteen male albino rats of (120 to 300 
g) were anesthetized with 1 percent halo- 
thane, mounted in a stereotaxic frame, and 
maintained at 370C. Techniques of craniot- 
omy, dura removal, and identification of 
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Purkinje cells during extracellular record- 
ing with five-barrel glass micropipettes 
have been described (16). Drugs (17) were 

iontophoretically applied (by anionic cur- 
rent) to individual neurons with the use of 
a circuit having continuous automatic neu- 
tralization of currents, with a driving elec- 
tromotive force of i 100 volts (18). In an- 
other series of experiments designed to 
control for possible current artifacts inher- 
ent in iontophoresis (19), cyclic AMP and 
nine of its derivatives were ejected with 
cationic bulk flow using the-technique of 
electroosmosis (17, 20). 

The precautions used in testing neuronal 
responsivity to drugs have been discussed 
(19, 21). Cyclic AMP and 11 derivatives 
were tested on 211 Purkinje cells and 13 
unidentified cells. Responses to the agents 
were classified for effect on spontaneous 
activity as depressant, excitatory, or bi- 
phasic and reversible. When tested by ion- 

tophoresis, cyclic AMP and four other de- 
rivatives depressed a majority of Purkinje 
cells (Fig. 1 and Table 1). Rapid, strong in- 
hibitions to cyclic AMP were often ob- 
served, although prolonged (1 to 5 min- 
utes) responses with a long latency (30 to 
60 seconds) also occurred (21) (Fig. IB). 

Depressions produced by cyclic AMP were 
occasionally weak, and in 50 percent of the 
cases required currents of 80 na or more. 

The percentage of Purkinje cells de- 

pressed by cyclic AMP (63 percent of 57 
neurons) is similar to that (61 percent) re- 

ported previously (3). However, 80 percent 
or more of the Purkinje cells were de- 

pressed by three of the cyclic AMP deriva- 
tives substituted at C-8, namely 8-para- 
chlorophenylthio- (8-PCPT-), 8-benzyl- 
thio-, and 8-amino- analogs (Table 1). The 
first two derivatives depressed firing more 
strongly and rapidly than cyclic AMP, 
and at lower ejection currents (Fig. 1, B 
and C). The N6-monobutyryl deriva- 
tive depressed the same percentage of Pur- 
kinje cells as cyclic AMP (22, 23). 

The effects of cyclic AMP and nine de- 
rivatives were tested by electroosmosis (20, 
24). In these experiments (Table 1), cyclic 
AMP depressed only 43 percent of the 
Purkinje cells, as would be expected from 
the smaller amounts of cyclic AMP re- 
leased by electroosmosis as compared to 

iontophoresis (11). However, four deriva- 
tives, 8-PCPT-, 8-benzylthio-, N6-mono- 
butyryl-, and N6,02'-dibutyryl- cyclic 
AMP still depressed 50 percent or more of 
the cells. As with iontophoresis, the 8- 
PCPT- analog depressed a large percent- 
age (82 percent); 8-PCPT- and 8-benzyl- 
thio- derivatives generally produced strik- 
ing depressions at low ejection currents (5 
to 80 na). 

Two derivatives, O2'-monobutyryl and 
2'-deoxy cyclic AMP were ineffective in 
depressing activity and, in fact, excited 
two-thirds of the Purkinje cells (Fig. 1B). 
Alterations of the 02' position of the ri- 
bose moiety inactivate the ability of cyclic 
AMP to stimulate protein kinase (14, 25). 

If the proportion of Purkinje cells inhib- 

Table 1. Response of Purkinje cells to cyclic AMP and its analogs. Protein kinase (PK) activity is 
scaled from 0 to 4. 

Iontophoresis (%)* Electroosmosis (%)* 
Cyclic AMP PK 

or analog CK Cells (No 
(No.) _ (No.) (No.) 

8-Parachloro- 
phenylthio 4 12 92 0 0 8 38 82 3 13 3 

8-Benzylthio 4 20 80 0 5 15 35 69 17 9 6 
8-Amino 3 11 82 0 9 9 
Cyclic AMP 3 57 63 11 16 10 23 43 17 39 0 
N6-Monobutyryl 3 29 62 7 31 0 26 65 23 8 4 
8-Bromo 4 29 48 14 35 3 8 38 38 12 12 
8-Isopropylthio 3 19 47 11 26 16 23 48 30 0 22 
8-Methylthio 4 19 42 32 10 16 16 31 37 13 19 
N6,02-Dibutyryl 0 20 40 0 40 0 11 54 18 7 0 
8-Methylamino 2 19 21 53 21 5 17 35 47 0 18 
O2-Monobutyryl 0 14 14 64 14 7 7 0 71 29 0 
2'-Deoxy 0 16 6 69 6 18 

*Effect of iontophoresis (anionic current) and electroosmosis (cationic) expressed as percent of testable cells. i 
Depression of spontaneous discharge; T, acceleration or speeding; 0, no effect; iT, biphasic or reversible. Com- 
pounds are arranged in decreasing order of percentage inhibitions by iontophoresis. Protein kinase (PK) refers to 
relative potency in activating protein kinase of bovine brain (25), as reported by Meyer and Miller (14). 
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ited are compared with the relative values 
of brain protein kinase activation for each 
of the derivatives published by Meyer and 
Miller (14), a Pearson moment correlation 
can be computed (26). With increasing 
protein kinase activation scaled relatively 
from 0 to 4 (cyclic AMP = 3), percent in- 
hibitions of Purkinje cells are significantly 
correlated: (r = +.78 and +.72; P < .01 
and .02, respectively, for the iontophoresis 
and electroosmosis experiments). Correla- 
tion coefficients computed (26) for percent 
excitations and protein kinase activation 
were negatively significant (r = -.85 and 
--.78; P < .001 and .01, respectively, for 
iontophoresis and electroosmosis). The re- 
gression lines (26) are shown in Fig. 1E. 
Dibutyryl cyclic AMP is excluded from the 
correlation, since tissue deacylases convert 
it to N6-monobutyryl cyclic AMP with a 
concomitant change in relative protein ki- 
nase activation from 0 to 3, respectively 
(14,27). 

Two points are apparent from these cor- 
relations. First, even though other contrib- 
utory factors such as membrane per- 
meability, degradation by phosphodies- 
terase and release transport numbers are 
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ignored, cyclic AMP analogs with strong 
protein kinase stimulating ability are more 
likely to depress a large percentage of Pur- 
kinje cells. Second, analogs with little pro- 
tein kinase activity generally excite Pur- 
kinje cells, suggesting that excitation by 
cyclic AMP and its derivatives result from 
an action unrelated to protein kinase acti- 
vation. Thus, the outcome of an iontopho- 
retic test depends on the competition be- 
tween the excitatory and inhibitory effects 
of the molecule, the latter determined by 
protein kinase stimulating potency. 

These results with derivatives of high 
protein kinase activating capability 
strengthen the link between adrenergic in- 
hibition of Purkinje cells and its intra- 
cellular mediation by cyclic AMP (3). Sev- 
eral analogs studied here depressed per- 
centages of cells approaching those seen 
with norepinephrine. One, the 8-PCPT- 
analog, depressed 92 percent of Purkinje 
cells, very near the 98 percent reported for 
norepinephrine depressions (16). These 
findings thus overcome the objection (10) 
that a cell-by-cell mimicry of norepineph- 
rine effects is not produced by cyclic AMP. 

Our results constitute the first direct cor- 
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Fig. 1. Effect of cyclic AMP analogs on rat Purkinje neurons. (A) Oscilloscope record of actual neu- 
ronal discharge. Bar above record shows duration of application by iontophoresis of the 8-isopro- 
pylthio- analog of cyclic AMP (100 na). Most spikes occurring during inhibition by the drug are 
climbing fiber responses, which are not affected by cyclic AMP analogs. (B) Polygraph record of 
neuronal discharge rate (integrated over 1-sec intervals) showing weak, slow inhibition by cyclic 
AMP (175 na) and rapid excitation by cyclic 2'-O-deoxy AMP (200 na). (C) Rate record of another 
Purkinje cell showing rapid, strong inhibitions by the 8-parachlorophenylthio analog of cyclic AMP 
(40 na and 10 na, applied by electroosmosis from a 0.02M solution). (D) Rate record of same cell as 
in panel A, showing depression of firing by the 8-methylthio- analog (40 na) and the 8-isopropylthio- 
analog (10 na) of cyclic AMP and excitation by the 8-methylamino- analog of cyclic AMP (80 na), 
all by iontophoresis. Time calibration bar pertains to panels B, C, and D. (E) Regression plots of 
Pearson correlation comparing percentages of cells inhibited (slowed) and excited (speeded) by cy- 
clic AMP and the analogs, scaled according to their ability to activate bovine brain protein kinase 
relative to cyclic AMP (= 3). Protein kinase values taken from Meyer and Miller (14). Filled circles 
and solid regression lines refer to cyclic AMP and ten analogs applied by iontophoresis; open circles 
and dotted line refer to the electroosmosis experiments. The squares apply to N6,02-dibutyryl cyclic 
AMP, whose values were excluded from the calculations (see text). 
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relation between the electrophysiological 
effects of analogs of cyclic AMP in the 
central nervous system and their relative 
ability to activate protein kinase. The re- 
sults thus add further credence to the sug- 
gestion by Kuo and Greengard (7) that 
protein kinase activation is an important 
step in the physiology of cyclic AMP. 

The approach used here might be useful 
in testing hypotheses of similar links be- 
tween cyclic nucleotides and neurohor- 
mones in other systems. The continued use 
of dibutyryl cyclic AMP as the sole agent 
to test these hypotheses now seems unwise, 
since it must be enzymatically altered to 
affect intracellular protein kinase (27). 
Iontophoresis studies of other neuron sys- 
tems using cyclic AMP analogs such as 8- 
PCPT- and 8-benzylthio-, which have 
potent protein kinase activating ability 
seems warranted, as would a similar re- 
evaluation of those neuron systems where 
cyclic AMP and its dibutyryl analog are 
reported (28) not to reproduce the re- 
sponses to catecholamines. 

G. R. SIGGINS 
S. J. HENRIKSEN 

Laboratory of Neuropharmacology, 
Division of Special Mental Health 
Research, National Institute of 
Mental Health, St. Elizabeths Hospital, 
Washington, D.C. 20032 
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Erythrocyte Receptors for (Plasmodium knowlesi) Malaria: 

Duffy Blood Group Determinants 

Abstract. Duffy blood group negative human erythrocytes (FyFy) are resistant to 
infection by Plasmodium knowlesi, a simian malaria that infects Duffy positive human 
erythrocytes. The P. knowlesi resistance factor, Duffy negative erythrocytes, occurs in 
high frequency in West Africa, where the people are resistant to vivax malaria. This sug- 
gests that Duffy blood group determinants (Fy" or Fyb) may be erythrocyte receptors for 
P. vivax. 
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Table 1. The effect of various proteolytic enzymes on Duffy blood group determinants and malaria 
invasion of Duffy positive human erythrocytes. Removal of Duffy blood group determinants is ac- 
companied by reduced invasion by Plasmodium knowlesi. Abbreviation: RBC, erythrocytes. 

Titer Infected? 
RBC Duffyt after{ RBC 

phenotype Enzyme* typing adsorp- per 10,000 
tion RBC 

Fy(a+ b-) None +++ - 610 
Trypsin(l mg/ml) +++ -870 
Chymotrypsin (0.01 mg/ml) +++ 1:1 380 
Chymotrypsin (0.1 mg/ml) - 1:8 46 
Chymotrypsin (1 mg/ml) - 1: 8 17 

Fy(a-b+) None ++ + - 850 
Trypsin(l mg/ml) + + + + - 1110 
Chymotrypsin (0.01 mg/ml) + +++- 840 
Chymotrypsin (0.1 mg/ml) ++++: 1: 78 
Chymotrypsin (1 mg/ml) - 1:8 25 

*See (5) for details of enzymatic treatment. tScoring: + + + +, macroscopic clumps, clear supernatant; + + +, 
macroscopic clumps, slightly reddish supernatant; -, no microscopic clumps. t Antiserum to Duffy antigen was 
absorbed with RBC as follows: three drops of packed erythrocytes which had been washed with 0.85 percent NaCI were mixed with four drops of antiserum to Duffy antigen (titer = 1: 16), and the suspension was incubated for 40 
minutes at 370C. The supernatant was used for Duffy typing with the appropriate Duffy positive erythrocytes. A ti- ter of I : 8 indicates no adsorption of antibody, since mixture with cells caused a 1: 2 dilution of the original antise- rum. ?The counts were the sums of duplicate chambers. At high rates of invasion (> 100 infected RBC per 10,000 RBC), less than 10,000 RBC were counted, and the numbers in the table were estimated. 
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