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Abstract. When elemental enrichment factors in livin~ 
the ionic potential of the elements, a strikingly similai 
groups of organisms; the pattern is also similar, in its ge 
seawater. These relationships support the idea that life be 

interfacing with the primitive atmosphere of the earth. 

How life was created on the earth is a 

question that has long occupied theolo- 

gians and philosophers. While Darwinian 
evolution has replaced spontaneous gener- 
ation as the generally accepted explanation 
of the origin of species, science has not yet 
satisfactorily answered the question of how 
life arose on this planet. The realization of 
how old and large the universe is relative to 
our own solar system has led to specula- 
tion that there are other worlds that sup- 
port life. Indeed, it has been suggested that 
life was seeded here from some other part 
of the galaxy. Earth supplied the nutrients, 
so to speak, like an agar dish. The seeding 
may have been inadvertent, as in the con- 

cept of panspermia (I), or deliberately 
done by intelligent beings, as in the concept 
of directed panspermia (2). 
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Fig. 1. Elemental enrichment factors in four major groups of o 
against the ionic potential of the elements. For each element tl 
value and the vertical bar (if any) gives the range of enrichmen 
concentrations in the group of organisms. 
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positive ion and hydrogen; this is charac- 
teristic for most of the elements in the cen- 
ter of the periodic table, such as the transi- 
tion elements. Finally, when the ionic 

potential is high (> 10) the positive ion ap- 
propriates one or more oxygen ion, freeing 
the hydrogen and forming an oxyanion, 
which is generally soluble; this is charac- 
teristic of the nonmetals in the upper right 
corner of the periodic table. 

If life began in the primitive terrestrial 
oceans, elements whose abundances in the 

aqueous phase are high should have a high 
representation in living material. In Fig. 1, 
the enrichment factor for a number of ele- 
ments-that is, the ratio of the concentra- 
tion of the element in an organism to its 
concentration in the earth's crust (7)-is 
plotted against ionic potential. A similar 
curve is seen for all major groups of orga- 
nisms, as we proceed up the evolutionary 
scale from bacteria to fungi to plants to 
land animals, and for the ocean (Fig. 2). 

A general pattern is observed for all 
living organisms: (i) For elements of low 
ionic potential values (IP < 3) the log of 
the enrichment factor (EF) is in the range 
of -1 to + 1 indicating small enrichment or 
small depletion relative to the crust. (ii) 
For intermediate IP values (3 < IP < 10) 
log EF is -3 to -4 indicating large de- 
pletion in living organisms. (iii) For large 
IP values (IP > 10) log EF increases as the 
ionic potential increases and varies from 
-4 to +4. It should be noted that the ele- 
ments mentioned by Crick and Orgel as 
showing anomalous distribution patterns- 
Mo, Ni, and Cr-also follow this general 
pattern. Specifically, Mo does not show 
any significant enrichment in living organ- 
isms as compared to the earth's crust. 
Obviously, taking each element and each 
group of organisms separately, we may ex- 
pect many exceptions to the rules; still, 
the general pattern is strikingly similar for 
all the groups of organisms investigated. 

According to Oparin (8), some com- 
binations of biochemical reactions are 
characteristic of all contemporary orga- 
nisms. These are combinations of patterns 
acquired by the emerging living matter in 
its very early stages of development, before 
further specialization and differentiation 
took place. Thus the basic similarity of the 
elemental composition pattern of all 
groups of living organisms (Fig. 1) in- 
dicates that the pattern was determined 
at the initial steps of the development of 
life. 

It should be noted that in the range of 
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It should be noted that in the range of 
ionic potentials higher than 10, where the 
major biochemical elements sulfur, car- 
bon, and nitrogen are found, organisms 
have a very significant enrichment of 10 to 
almost 10,000 relative to the ocean. This 
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may be taken as a clue to a more exact lo- 
cation for the origin of life. It can be specu- 
lated that life began at the interface of the 

primitive atmosphere and the ocean, in the 
thin microlayers at the surface of the ocean 
where large enrichments of the atmo- 
spheric constituents (mainly nitrogen and 
carbon at that stage) may occur. Various 
other elements may also be concentrated in 
these microlayers because of the effects of 
surface-active materials, surface tension, 
and the transfer processes between the liq- 
uid and the gaseous phase. In any event, it 
is evident that a chemical environment 
similar to the earth's ocean is sufficient to 
explain the elemental abundance relation- 
ships in living materials. A nonterrestrial 
explanation, especially one that has in- 
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Spackling and drywall taping com- 
pounds consist of extremely fine-grained 
white powders or premixed pastes. Plaster 
of Paris is supposedly the major constitu- 
ent, but other light-colored materials in- 
cluding clays, micas, quartz, talc, and 
ground limestone, supplement or replace 
the plaster in many formulations. Chryso- 
tile is added to some products, apparently 
because these minute fibers act as rein- 
forcing agents. The presence of amphibole 
asbestos in some products results from its 
natural occurrence in talc, carbonates, and 
other rocks used as raw materials (1). 
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voked special chemical conditions as being 
advantageous to the rapid development of 
life, is not justified. 
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Fifteen samples of consumer spackling 
and patching compounds were purchased 
at hardware stores in the New York City 
area, four in 1972 or earlier and the re- 
mainder in January 1974. We analyzed the 
samples for mineral phases by polarized 
light microscopy, x-ray powder diffraction, 
and transmission electron microscopy, 
with particular attention to quantitative 
determination of asbestos minerals. The 
spackling and taping compounds consist 
mainly of particles smaller than 3 Aim in 
average diameter or length (Fig. 1). Par- 
ticles of this size are generally too small to 
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Exposure to Asbestos in the Use of Consumer Spackling, 

Patching, and Taping Compounds 

Abstract. Analysis of representative samples of spackling, patching, andjointing com- 
pounds, purchased at retail stores in the New York City area, has shown that some con- 
tain asbestos minerals as well as other biologically active substances. Measurements sug- 
gest that home repair work involving the use of such materials may result in exposure to 
dust at concentrations sufficient to produce disease. 
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