
development, birds of different species rely 
on divergent instructions in their templates 
for selection of a model to copy. 

Usually, only male birds sing; females 
recognize and respond to songs of the 
males of their species. This ability to re- 
spond, according to Konishi, may be a 
product of genes that are linked to genes 
that code for song production. The hypoth- 
esis that females also inherit a modifiable 
song template provides an explanation of 
the discovery that females have all the ge- 
netic information necessary to learn songs. 
Konishi injected females with the male sex 
hormone testosterone, which causes fe- 
males to sing. He found that these females 
learned songs in the same way as males 
and that they had the same critical period 
for song learning. 

Although a genetic link between song 
production and reception in birds is not es- 
tablished, a precedent for such a hypothe- 
sis exists with crickets. Ronald Hoy of 
Cornell University and David Bentley of 
the University of California at Berkeley 
showed that all the information necessary 
for transmitting and receiving cricket 
songs is genetically derived-environ- 
ment plays no role-even though each 
cricket species, like each bird species, 
has its own song. Hoy and his associate 
Robert Paul of Cornell University report 
that, when crickets of two different species 
are mated, their male progeny produce a 
hybrid song (only males sing) that differs 
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from the songs of males of either parental 
species. Moreover, the female progeny pre- 
fer the hybrid song of their brothers to the 
songs of males of either parental species, 
indicating that neural connections for song 
production and reception are inherited to- 
gether. 

Recently, Peter Eimas of Brown Univer- 
sity and his associates discovered that hu- 
man beings inherit, rather than learn, some 
abilities for perceiving speech sounds. Hu- 
man infants that have not yet begun to 
speak are able to perceive contrasts in 
speech sounds and subsequently lose the 
ability to hear contrasts between speech 
sounds that are not differentiated in the 
language they eventually speak, in agree- 
ment with the attrition theory in vision. 

People perceive speech sounds and non- 
speech sounds differently. Nonspeech 
sounds that have continuously varying fre- 
quencies are heard as a continuum of 
sounds. Speech sounds that have contin- 
uously varying frequencies are heard as 
distinct segments of sound. For example, if 
a person listens to a continuum of sounds, 
produced by a machine, that vary from the 
sound [ba], as in bark, to [da], as in dark, 
the continuum will sound like two seg- 
ments: one segment will sound like [ba] 
and the other like [da]. No sounds will be 
perceived as intermediate between [ba] and 
[da]. This tendency to segmentalize speech 
sounds, which is crucial to the comprehen- 
sion of language, is manifest so early in life 
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that some investigators think of it as in- 
herited. 

Kunito Miyawaki of the University of 
Tokyo, Alvin Lieberman of the Haskins 
Laboratory in New Haven, and their asso- 
ciates report that adult native speakers of 
Japanese cannot distinguish between the 
sounds [ra] and [la], whereas native speak- 
ers of English can. Eimas finds that the 
ability of English speakers to make this 
distinction is not learned, since American 
infants between 2 and 3 months of age dis- 
tinguish between [ra] and [la]; the Japanese 
apparently lose this ability. 

The critical period for retaining the abil- 
ity to perceive phonetic contrasts such as 
that between [ra] and [la] is unknown. 
However, Eimas suggests it may include 
the first 16 years of life. Japanese who were 
exposed before the age of 16 to a language, 
such as English, in which [ra] and [la] are 
distinguished could later hear this phonetic 
contrast. 

Bird and human communication, then, 
like vision, has some components influ- 
enced only by genes. Other components 
can be altered in response to environmen- 
tal stimuli, although the range of modifi- 
ability seems also to be influenced by ge- 
netic constraints. The nature and extent of 
these constraints on the way in which envi- 
ronments produce these lasting changes in 
behavior promises to be a hotly debated 
question for future research. 

-GINA BARI KOLATA 
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Foundations of Mathematics: Unsolvable Problems Foundations of Mathematics: Unsolvable Problems 

Mathematicians have known since 1931 
that some exotic mathematical problems 
must necessarily be unsolvable, but only 
within the last decade did they begin to dis- 
cover examples of such problems in many 
parts of mathematics. Now hundreds of 
such problems have been proved to be un- 
solvable. Recently two rather famous prob- 
lems-one proposed by the German math- 
ematician David Hilbert in 1900 and the 
other proposed by the Russian mathe- 
matician Mikhail Souslin in 1920-have 
been added to the growing list. 

Actually, there are two distinct types of 
"unsolvability" in mathematics. One kind, 
illustrated by the 19th-century result that 
the classical Greek problem of trisecting 
an angle is unsolvable, is really an instance 
of "impossibility." The other type, of far 
greater scientific and philosophic import, is 
really a judgment of "undecidability": the 
discovery of non-Euclidean geometry 
showed, for example, that Euclid's fifth 
(parallel) postulate could not be decided- 
that is, proved or refuted-on the basis of 
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the other accepted axioms of plane geome- 
try. 

The possibility-indeed, the certainty- 
that some mathematical problems may ac- 
tually be undecidable was first discovered 
by the logician Kurt G6del, now at the In- 
stitute for Advanced Study in Princeton. 
He showed in 1931 that all axiomatic sys- 
tems (except very simple ones) must con- 
tain assertions that can be neither proved 
nor refuted by logical deduction from the 
given axioms. This means that all of the fa- 
mous unsolved problems of mathemat- 
ics-the four color problem, Goldbach's 
conjecture, Fermat's last theorem, and so 
on-became candidates for the purgatory 
of perpetual undecidability, and that math- 
ematicians will have to determine whether 
they are undecidable or merely very hard 
to solve. 

The first major breakthrough in the 
search for specific undecidable proposi- 
tions came in 1963. In that year Paul Co- 
hen of Stanford University, extending 
work begun by Gddel in 1939, established 
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the undecidability of a conjecture due to 
the 19th-century mathematician Georg 
Cantor concerning the relative sizes of sub- 
sets of the real number line. Cantor was 
trying to formulate a concept (now called 
cardinal number) that would permit com- 
parative judgments about the sizes of in- 
finite sets. He conjectured that every subset 
of the real numbers must have the same 
size either as the set of all integers or as the 
much larger set of all real numbers. 

Cantor's so-called continuum hypothe- 
sis took nearly two-thirds of a century to 
resolve, and then Cohen found that the res- 
olution was neither a proof of the con- 
jecture nor a counterexample to it. It was, 
rather, a revolutionary analysis of the limi- 
tations of logical reasoning leading to the 
conclusion that Cantor's conjecture can be 
neither proved nor disproved on the basis 
of the accepted axioms of set theory. 

Cohen's method of proof, the basis for 
most undecidability results, is a delicate 
chain of reasoning in which one very care- 
fully forces into existence a mathematical 
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model with certain predetermined proper- 
ties. The method has been applied exten- 
sively during the past decade to construct 
mathematical models with all sorts of ex- 
otic properties and, in the process, estab- 
lish the undecidability of a host of mathe- 
matical propositions, some obscure and 
some rather famous. Each undecidability 
proof requires construction of a model in 
which the proposition in question is true 
and of another one in which it is false: the 
undecidability of the proposition follows 
from the existence of such models, for no 
general proof or refutation will be possible 
if the proposition is, in fact, true in some 
models while false in others. 

A few years ago, Thomas Jech of the 
State University of New York, Buffalo, 
and Stanley Tennenbaum of the University 
of Rochester found-by modifying Co- 
hen's method-a model in which Souslin's 
conjecture is false. Souslin's conjecture, 
like Cantor's, had something to do with the 
size of the real number line. What Souslin 
proposed was a simple characterization of 
the real number line-a specific axiomatic 
description that would logically entail all 
properties of the real number line. 

Souslin knew that the ordinary proper- 
ties of the real numbers-their arrange- 
ment in a linear order without any gaps, 
for instance-are not adequate to unam- 
biguously characterize them because there 
are mathematical structures that have all 
of the ordinary properties but are quite dif- 
ferent from the real numbers. One such 
structure is called the long line because it 
looks just like the ordinary real line but is 
much longer: it contains the ordinary real 
line as a tiny subset. Souslin conjectured 
that the real line is, in a certain sense, the 
smallest object that satisfies all the ordi- 
nary, arithmetical properties of numbers. 

The model of Jech and Tennenbaum did 
not disprove Souslin's conjecture, for to do 
that one would have to demonstrate that 
the conjecture is false in every possible 
model. Jech and Tennenbaum only found 
one model in which it was false. But then 
Ronald B. Jensen of the University of Cali- 
fornia, Berkeley, using still another varia- 
tion on Cohen's method, found a specific 

model in which Souslin's conjecture is true. 
The existence of these two models with op- 
posite features ensures that Souslin's con- 
jecture is actually undecidable. 

Like Euclid's fifth postulate, Cantor's 
and Souslin's hypotheses are not decidable 
from the other conventional axioms. When 
mathematicians say that they are unsolv- 
able, they mean simply that the axiomatic 
structure of mathematics is not sufficiently 
powerful to decide whether they are true or 
false. 

But unlike their equivocation over Eu- 
clid's fifth postulate, mathematicians' in- 
ability to resolve Cantor's and Souslin's 
conjectures is not due merely to their refus- 
al to write down sufficiently many axioms. 
Cantor and Souslin were attempting to de- 
scribe properties of a large infinite set (the 
real numbers); the undecidability of these 
properties is a reflection of the hazards of 
employing a logical leap of faith to extend 
our knowledge of finite sets to infinite ones. 

In contrast, the problem proposed by 
Hilbert-specifically, the tenth on the list 
of 23 problems which he set forth in 1900 
as challenges for 20th-century mathemat- 
ics-is unsolvable in the sense that no ob- 
jects of the sort required by this problem 
can ever exist, in theory or in practice. Hil- 
bert asked in his tenth problem for an al- 
gorithm (a list of instructions for solving a 
problem) that could decide for any polyno- 
mial equation whether or not it had any in- 
teger solutions. In 1970 the young Russian 
mathematician Yuri Matiyasevich of the 
University of Leningrad proved that no 
such algorithm can exist. 

Matiyasevich's proof is totally unlike 
Cohen's forcing methods, and the nature 
of his conclusion is likewise quite different. 
Matiyasevich succeeded, by means of a 
complex Diophantine equation (one whose 
solutions are required to be integers), to re- 
duce Hilbert's tenth problem to a classical 
argument concerning the nature of algo- 
rithmic processes: there is no general 
method which can be used to determine 
whether a proposed algorithm will neces- 
sarily halt-that is, yield an answer. This 
result, popularly called the halting prob- 
lem, depends on reasoning analogous to 

that used by Gddel in his proof that ax- 
iomatic systems must have undecidable 
propositions. 

All these results--Gdel's undecidability 
theorem, the halting problem, and Mati- 
yasevich's answer to Hilbert's tenth prob- 
lem-employ a "diagonalization" tech- 
nique first introduced by Cantor to prove 
that the set of real numbers was too large 
to be ennumerated even in a potentially 
infinite list. Bold variations on this single 
theme produce a family of related im- 
possibility results: we cannot decide all 
propositions, we cannot decide whether a 
computer program will necessarily pro- 
duce an output, and we cannot determine 
whether polynomial equations necessarily 
have integer solutions. 

Classical mathematics had its share of 
impossibility results too: we cannot trisect 
an angle by Euclidean means, we cannot 
find a formula to solve exactly all polyno- 
mial equations of degree greater than five, 
we cannot square a circle. The new results 
are analogous to these old ones, but far 
more general. Instead of saying that some 
one problem cannot be solved, they are 
saying that whole classes of problems can- 
not be solved. They are, in a very funda- 
mental sense, a statement of certain limits 
on man's intellectual ability. 

Hilbert concluded the address in which 
he set forth his 23 problems with the affir- 
mation: "We hear in us the perpetual call: 
There is the problem. You can find it by 
pure reason, for in mathematics there can 
be no ignorabimus." Centuries before Hil- 
bert, juries often returned the verdict of ig- 
norabimus (we will not know) when they 
found the evidence insufficient for a ver- 
dict. When faced with undecidable propo- 
sitions, the jury of contemporary mathe- 
maticians has also begun to render the ig- 
norabimus verdict. Undecidability is no 
longer a curiosity but a central fact of 
mathematical research. 

-LYNN ARTHUR STEEN 
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