
changes. Since colonies of rodents tend to 
feed and drink at sites which adults of the 
colony frequent, we suggest that weanling 
mice "learn" to drink the solution con- 
sumed by their adult models. Alcohol in- 
take data in these strains have been inter- 
preted (14) to indicate the complex inher- 
itance of the alcohol preference; it seems 
not unlikely that social pressures might op- 
erate to affect the reinforcing value of the 
taste of alcohol, a factor given first consid- 
eration by Fuller and Collins (14). 

Whether critical periods exist for envi- 
ronmental influences to be effective in 
mice, as in man, is not known. Whether 
adult subjects with established drinking be- 
haviors would be influenced as readily, and 
as substantially, as the young mice in this 
experiment, or whether the alteration in 
drinking behavior we have observed per- 
sists beyond our test period can only be an- 
swered by further experiments. The extrap- 
olation to man of the data of such further 
experiments may, of course, never be war- 
ranted. 
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an activity in the order of 4000 to 6000 
mouse units per milligram (9) were ob- 
tained. The toxins were found in the skin of 
both males and females, but not in the vis- 
cera, muscle, or bone. In one group of male 
frogs it was found that the toxin was uni- 
formly distributed in the skin dorsally, 
ventrally, and along the limbs. Solid tetro- 
dotoxin ultimately separated from highly 
purified aqueous concentrates of the skin 
of A. varius ambulatorius (Table 1). It was 
identified by use of proton nuclear mag- 
netic resonance (NMR) spectroscopy 
[Varian XL-100 NMR instrument in Fou- 
rier transform mode (10)] by direct com- 
parison with a genuine sample. Tetrodo- 
toxin has a unique NMR spectrum with a 
slightly broadened upfield doublet coupled 
with a sharp downfield doublet (D20O plus 
CD3COOD as solvent; 6 2.76, 5.91 ppm; 
J = 9.5 hz, 1H). Both signals appear in a 
region unencumbered by other signals and 
are readily recognized. Furthermore, the 
mass spectra of tetrodotoxin from these 
frogs and from puffer fish are identical 
(11). In addition, tetrodotoxin was the ma- 
jor and perhaps only toxic constituent in 
the concentrates from skin of A. varius 
varius (Table 1). 
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Tetrodotoxin: Occurrence in Atelopid Frogs of Costa Rica 

Abstract. The potent neurotoxin tetrodotoxin, which has previously been found in puf- 
fer fish of the order Tetraordontiformes, a goby (Gobius criniger), and the California 
newt (Taricha torosa), has now been identified in the skins offrogs of the genus Atelopus 
from Costa Rica. 
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Tetrodotoxin (1), the structurally unique 
and pharmacologically potent neurotoxin, 
was first isolated from Japanese puffer fish 
(2), primarily Spheroides rubripes, and 
subsequently from the California newt, Ta- 
richa torosa (3), and other members of the 
genus Taricha (4). The occurrence of tetro- 
dotoxin in two such different animals as 
the newt and the puffer fish was surprising 
in view of the fact that this compound does 
not appear to be a substance readily acces- 
sible via the known biogenic pathways 
from acetate, mevalonate, or the amino 
acids (5). More recently, tetrodotoxin has 
been isolated from a completely different 
fish, a goby (Gobius criniger) from Taiwan 
and Amami-Oshima Island (6). We now 
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report that we have identified tetrodotoxin 
in extracts of skin from three populations 
of frogs of the genus Atelopus from Cen- 
tral America (7). We have found that aque- 
ous extracts of skin of approximately 12 
different species, subspecies or distinct 
populations of atelopid frogs, so far tested 
by us are toxic when injected intra- 
peritoneally into mice. In four of these 
(Table 1) we were able to obtain enough 
material so that some information con- 
cerning the chemical nature of the toxin 
could be deduced. This was done by tech- 
niques previously described (8), combined 
with final purification with gel filtration 
chromatography (pyridine acetate buffer, 
at 50C, on Bio-Gel P-2). Concentrates with 

report that we have identified tetrodotoxin 
in extracts of skin from three populations 
of frogs of the genus Atelopus from Cen- 
tral America (7). We have found that aque- 
ous extracts of skin of approximately 12 
different species, subspecies or distinct 
populations of atelopid frogs, so far tested 
by us are toxic when injected intra- 
peritoneally into mice. In four of these 
(Table 1) we were able to obtain enough 
material so that some information con- 
cerning the chemical nature of the toxin 
could be deduced. This was done by tech- 
niques previously described (8), combined 
with final purification with gel filtration 
chromatography (pyridine acetate buffer, 
at 50C, on Bio-Gel P-2). Concentrates with 

From a population of frogs identified by 
Savage (12) as A. chiriquiensis (Table 1), 
we obtained a skin extract that proved to 
be a mixture of approximately 30 percent 
tetrodotoxin and a second major com- 
ponent which we have designated chiri- 
quitoxin after the species in which it is 
found. After separation from tetrodotoxin 
by liquid-liquid chromatography (250 
pounds per square inch, Bio-Gel P-2, pyri- 
dine-acetate buffer) it is clearly distin- 
guishable from it by its NMR spectrum. 
The chiriquitoxin spectrum bears a certain 
resemblance to that of tetrodotoxin, espe- 
cially with respect to the coupled upfield- 
downfield doublets. 

We have also reexamined the previously 
obtained skin extracts from the Pan- 
amanian frog A. zeteki (8, 9) (Table 1) 
from which we had isolated a substance 
that had been designated atelopidtoxin and 
is now called zetekitoxin. We have been 
unable to detect either tetrodotoxin or 
chiriquitoxin in the A. zeteki extracts. We 
are confident that we could easily detect, 
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Table 1. Toxicity and occurrence of tetrodotoxin in Costa Rican frogs. 

Frog Tetrodotoxin 

Toxi- Aver- 
city Percent 

Species Num- Dorsal Origin age per of 
ber color weight fr total 

g) (M.U.)* 

a. A telopus varius 375 Black and red San Antonio de 1.8 100 -100 
(A. varius on yellow Patarra, San 
varius) Jose province, 

Costa Rica 
b. Atelopus varius 99 Mottled black Valle de Parrazu, 1.3 120 -100 

(A. varius on green Costa Rica, also 
ambulatorius) San Carlos, N. 

Costa Rica 
c. Atelopus 93 Uniform Cerro de la 1.6 350 -30 

chiriquiensis yellow, yellow- Muerte, S. 
green, grey, or Costa Rica 
rust-grey 

d. A telopus varius Black on El Valle de 6.2 1200 >5 
(A. varius zeteki)t orange or Anton, 

orange Panama 

*M.U., mouse units; 1 M.U. is the amount of toxin necessary to kill a 20-g mouse within 1 hour when the toxin is 
administered intraperitoneally in a volume of 0.2 ml. t'See (8, 9). 

by the NMR method being used, 5 percent 
of tetrodotoxin or chiriquitoxin (or both). 
Probably half this amount would be ob- 
served. 

Savage (12) has published a systematic 
revision of the genus Atelopus of Costa 
Rica and Panama in which he recognized 
only three species in this region: A. varius, 
A. chiriquiensis, and A. senex. Several 
other populations are classified by Savage 
as Atelopus varius. Earlier investigators 
recognized these as distinct species or sub- 

species on the basis of their distinctive pat- 
terns of coloration. It is thus not surprising 
that we found that tetrodotoxin was 

present in the skin of both populations 
listed as (a) and (b) in Table 1 (those popu- 
lations previously designated as A. varius 
varius and A. varius ambulatorious). On 
the basis of NMR spectra, we are certain 
that zetekitoxin (8, 9) is distinct from both 
tetrodotoxin and chiriquitoxin. In addi- 

tion, the pharmacological action of zete- 
kitoxin is different from that of tetrodo- 
toxin. Some studies on the new chiriqui- 
toxin show that it also is distinct from 
zetekitoxin but that it closely resembles 
tetrodotoxin in pharmacological action. 

The occurrence of tetrodotoxin in widely 
different animals (puffer fish, a goby, 
newts, and frogs) suggest that this toxin 

may have some physiological function in 
animals aside from its possible one of af- 

fording protection from predators. Heil- 
brunn et al. (13) suggested that tetrodo- 
toxin may have antimitotic properties sim- 
ilar to those of substances extracted from 
ovaries of starfish. However, in the experi- 
ments made by Couillard (14) in Heil- 

brunn's laboratory, the antimitotic sub- 
stance extracted from the spent ovaries of 
Atlantic puffers, which in any case contain 

very little tetrodotoxin (15), had chemical 

properties quite different from those of tet- 
rodotoxin. In our laboratory (16) we found 
that tetrodotoxin in concentrations as high 
as 1 mg/liter had no effect on the growth 
of mouse fibroblasts in cell culture (mea- 
sured by counting and by protein analysis) 
over a 4-day period. Habermehl and 
Preusser (17) have proposed that the poly- 
peptide toxins found in the skin of Lep- 
todactylus serve as antimicrobial or anti- 

fungal agents. We could not demonstrate 

any antibacterial effect of tetrodotoxin on 

Staphylococcus aureus, S. albus, or Strep- 
tococcus pyrogenes (18). In addition we 
have observed unidentified bacteria and 

fungi growing in concentrated solutions 
of the toxin from A. zeteki as well as A. 
varius varius. For this reason, we purified 
our extracts at 5?C and always passed 
them through bacterial filters. Thus if 
tetrodotoxin has any physiological func- 
tion in the various animals in which it oc- 

curs, it remains to be found. 
The erratic distribution of tetrodotoxin 

in Atelopus and Gobius (6) may suggest 
again the possibility that it originates in 
the food of these animals (19). However, it 
seems quite unlikely that a widely distrib- 
uted toxic plant or microorganism that 
could serve as a food source (either directly 
or indirectly) for fish, newts, and frogs 
would have eluded detection until now. It 
seems more logical to assume that the abil- 

ity to synthesize tetrodotoxin was a coinci- 
dental genetic development in certain 

fishes and amphibians either because it has 
survival value or because it is a metabolic 
end product that happens to be toxic. 

The finding of three distinct very potent 
toxins (tetrodotoxin, zetekitoxin from A. 
zeteki (8, 9), and chiriquitoxin, the new tet- 
rodotoxin-like substance from A. chri- 

quiensis) among the closely related Ate- 

lopus of Costa Rica and Panama is of 

great significance for any attempt at bio- 
chemical taxonomy of this genus. The 
identification of the specific toxins respon- 
sible for the toxicity found in this group of 

frogs and their distribution among the 
other Atelopus of Central and South 
America remain to be determined. 
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