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FTG cells and single-cycle data for LC cells. 

The existence of a cell group in the re- 
gion of the nucleus locus coeruleus (LC) of 
the cat with discharge activity curves oppo- 
site to those of cells in the gigantocellular 
tegmental field (FTG) has been docu- 
mented by Hobson et al. (1). It was pro- 
posed that reciprocal interaction between 
excitatory and inhibitory neural popu- 
lations may determine the alternation of 
sleep cycle states. We now present a simple 
structural and mathematical model for 
sleep cycle control based on the reciprocal 
interaction hypothesis and consider as- 
pects of FTG and LC unit discharge activ- 
ity curves in terms of the model (2). 

The temporal organization of discharges 
in the FTG with respect to the sleep-wak- 
ing cycle is illustrated in Fig. 1 for an FTG 
neuron recorded continuously for 10.5 
hours. The most striking features of this 
discharge time course are the periodically 
occurring peaks of discharge activity, each 
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of which corresponds to a desynchronized 
sleep episode. This regular, nonsinusoidal 
modulation of discharge activity was no- 
ticed in all of the six pontine reticular neu- 
rons recorded over 10 to 18 sleep-waking 
cycles (recording duration, 4.7 to 17.5 
hours), although there was variability in 
the extent of modulation and cycle length. 
The presence of periodicity was confirmed 
by peaks in serial correlation coefficients 
and a dominant peak in the power spectral 
density (3). 

For a detailed examination of the time 
course of discharge activity over the sleep- 
waking cycle, we normalized the duration 
of each cycle and averaged the activity 
over many cycles. Figure 2C presents the 
average activity curve for 12 cycles of FTG 
neuron 568, whose average cycle length 
was about 20 minutes. Note that the form 
of the activity curve is in general agree- 
ment with that in Fig. 1. What mechanism 
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might be involved in generation of these 
nonsinusoidal, periodic neuronal activity 
curves? A detailed autocorrelation analysis 
of the discharge pattern of brainstem neu- 
rons gave no evidence for the regular, 
stereotyped discharge patterns generated 
by invertebrate pacemaker neurons in- 
volved in control of rhythmic activity (4). 
We were thus led to pursue the implica- 
tions of the hypothesis that the time course 
of FTG unit activity is the result of recip- 
rocal interaction with LC neurons. 

Figure 2A shows the structural con- 
nections and the signs of influence that we 
have postulated. Golgi studies indicate the 
presence of FTG recurrent collaterals (5), 
and we have observed that the process of 
transition to high discharge levels in de- 
synchronized sleep in FTG neurons is of 
exponential order, a finding compatible 
with self-excitation via such collaterals (6). 
Studies using Golgi (7) and Nauta (8) tech- 
niques have indicated the presence of a 
projection from FTG to LC cells which is 
postulated to utilize acetylcholine and to 
be excitatory. The available histochemical 
evidence points to the FTG cells as both 
using acetylcholine as a neurotransmitter 
and being influenced themselves by syn- 
aptically released acetylcholine (9). Con- 
nections from LC to FTG and from LC to 
LC cells are indicated by Golgi work (7) 
and by the presence of norepinephrine-con- 
taining varicosities in each area (10); these 
synapses are assumed to utilize norepi- 
nephrine as a neurotransmitter and to be 
inhibitory (11). Hobson et al. (1) discuss 
the problem of identification of the norepi- 
nephrine-containing cells with those re- 
corded by us. 

With this basic structural model, we 
proceeded to develop a parallel quan- 
titative model of interaction. The mathe- 
matical form of terms describing the influ- 
ence of each population on itself is sug- 
gested by evidence that the rate of change 
of activity levels in the FTG population is 
proportional to the current level of activity 
(6), and we propose that the same is true 
for the LC population, but with a negative 
sign because the recurrent feedback is in- 
hibitory. The highly nonsinusoidal nature 
of FTG activity suggested that nonlinear 
FTG-LC interaction was to be expected. 
We model this effect by the simplest form 
of nonlinearity, the product of activities in 
the two populations; this is in accord with 
the reasonable physiological postulate 
that the effect of an excitatory or inhib- 
itory input to the two populations will be 
proportional to the current level of dis- 
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charge activity in FTG cells; y(t) the level 
of discharge activity in LC cells; and a, b, 
c, and d positive constants identified with 
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Neuronal Excitability Modulation over the Sleep Cycle: 
A Structural and Mathematical Model 

Abstract. A modelfor control of the desynchronized phase of the sleep cycle postulates 
reciprocal interaction between cells in the pontine gigantocellular tegmentalfield (FTG 
cells) and cells in the nucleus locus coeruleus and nucleus subcoeruleus (LC cells). This 
physiological model leads to equations of the Lotka-Volterra type; the time course of ac- 
tivity predicted by the model is in good agreement with actual long-term recordings of 
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the strength of the connections outlined in 
Fig. 2A. These terms are related by the 

equations 

dx/dt = ax - bxy 
dy/dt = -cy + dxy 

This system of equations is that of Lotka 
and Volterra, originally proposed as a 
model for prey-predator interaction. In 
our model, the FTG (excitatory) cells are 
analogous to the prey population, and the 
LC (inhibitory) cells are analogous to the 

predator population. These equations and 
more complicated variants have been ex- 

tensively studied and the character of their 
solutions has been well documented (12, 
13), although no explicit solution in terms 
of elementary functions is available. For 
the simple model and the parameters used 
here, there is a periodic solution with neu- 
tral stability (12, 13). Hobson et al. (1) 
have presented a qualitative account of the 
events leading to periodic cycles, and the 
time course of FTG activity over several 
sleep-waking cycles predicted by the model 
is sketched in Fig. 2B (14). 

In Fig. 2C we compare a theoretical 
curve derived from the model with the ac- 
tual data values for the average of 12 cy- 
cles of unit 568 (15). The overall match is 
rather good. Specifically, both curves show 
a nadir in the first third of the cycle, a long 
period of slow growth of activity, and a 
rapid acceleration as the time of de- 
synchronized sleep onset is approached. 
The average time of desynchronized sleep 
onset occurs at about the same time as the 
theoretical curve crosses the equilibrium 
point, and the approach to the peak is less 
steep than the decline. Comparisons of 
similarly derived theoretical and observed 
data curves from other units showed about 
the same degree of fit (see also Fig. 2B). 
The model predicts that LC activity levels 
should decline steadily in synchronized 
sleep to a low point at desynchronized 
sleep onset, and then show a rapid rise in 
the last portion of desynchronized sleep 
(see the theoretical curve in Fig. 2C) (16). 
To determine if the LC pool shows this be- 
havior, we averaged the activity curves of 
ten LC cells, drawn from the population 
discussed in Hobson et al. (1), during suc- 
cessive quartiles of desynchronized sleep 
and for periods of equal duration before 
and after desynchronized sleep. The sketch 
of the observed data in Fig. 2D is in rea- 
sonably good agreement with the theo- 
retical curve in Fig. 2C. Note that the in- 
crease in discharge activity occurred be- 
fore the end of the desynchronized sleep 
episode in the averaged data; this impor- 
tant feature was present in each of the ten 
LC cells. Point by point comparisons of 
LC data with the theoretical curve will be 
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Fig. 1. Discharge activity of FTG neuron 610 recorded over multiple sleep-waking cycles. Each peak 
corresponds to a desynchronized sleep episode, and a regular trend of discharge activity over a cycle 
is observable: a peak in desynchronized sleep; a rapid decline at the end of the desynchronized sleep 
episode; a trough, often associated with waking; a slow rise (in synchronized sleep); and an explosive 
acceleration at desynchronized sleep onset. Note also the extreme modulation of activity and the pe- 
riodicity. 
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Fig. 2. (A) Structural model of interaction between FTG and LC cell populations. The plus sign im- 
plies excitatory and the minus sign inhibitory influences. The letters a, b, c, and d correspond to the 
constants associated with the strength of the connections and included in the text equations. (B) The- 
oretical curve derived from the model that best fits the FTG unit in Fig. 1. In this fit, a = 0.3029, c = 
0.1514, and the initial conditions (amplitude unsealed) were x(0) = 1 and y(0) = 4.5. (C) The solid 
line histogram is the average discharge level of FTG unit 568 over 12 sleep-waking cycles, each nor- 
malized to constant duration. The cycle begins with the end of desynchronized sleep, and the arrow 
indicates the bin with the most probable time of desynchronized sleep onset. The solid curve de- 
scribes the FTG fit and the dotted line the LC fit derived from the model with the values a = 0.5490, 
c = 0.2745, x(0) = 1, and y(0) = 3.0 (amplitude unscaled). The dot in the ordinate scale indicates the 
equilibrium values for the two populations. (D) Geometric mean values of the discharge activity of 
ten LC cells before (synchronized sleep, S), during (desynchronized sleep, D), and after (waking, W) 
a desynchronized sleep episode. Each time epoch is equal to one-quarter of a desynchronized sleep 
period. Note that the discharge rate increase begins in the last quarter of D. 
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possible with multiple-cycle LC cell 
recordings. 

The reciprocal interaction model for 
sleep cycle control is explicit and testable. 
It helps to order a confusing pharmacolog- 
ical literature and suggests critical experi- 
ments to test its postulates. For example, 
the model predicts that suppression of LC 
activity or its postsynaptic effects will pro- 
duce augmented FTG activity and hence 
more desynchronized sleep. Indeed, more 
desynchronized sleep has been found to re- 
sult from administration of substances 
blocking alpha-adrenergic receptors (17) 
and norepinephrine synthesis (18). These 
results run counter to the theory that de- 
synchronized sleep phenomena are actively 
generated by the LC, but are entirely con- 
sonant with our model. An interesting but 
so far untested corollary prediction about 
cellular events is that the LC cells nor- 
mally showing a marked decrease in dis- 
charge activity with the advent of de- 
synchronized sleep should show a less 
marked decline following the administra- 
tion of these drugs, since the inhibitory 
feedback will be less potent. The model 
further predicts that another approach to 
desynchronized sleep enhancement- 
through direct increase of FTG activity- 
would be to administer compounds that 
simulate the effect of acetylcholine in the 
FTG; this prediction of the model is also 
confirmed by several experiments (19). The 
parallel prediction that injection of such 
cholinomimetic compounds into the LC 
should result in less FTG activity and thus 
less desynchronized sleep because cells in- 
hibitory to the FTG are being stimulated 
has not been tested. We conclude that the 
model offers a good first approximation to 
the discharge activity curves of FTG and 
LC cells and is consonant with anatomical, 
physiological, and pharmacological data. 

ROBERT W. MCCARLEY 

J. ALLAN HOBSON 

Laboratory of Neurophysiology, 
Department of Psychiatry, 
Harvard Medical School, 
Boston, Massachusetts 
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Colonial Nervous Control of Lophophore Retraction 

in Cheilostome Bryozoa 
Abstract. Nervous impulses causing lophophore retraction over large areas of Mem- 

branipora membranacea and Electra pilosa were recorded with external electrodes. The 
response propagates at about 100 centimeters per second, presumably through the colo- 
nial nerve plexus of Hiller and Lutaud. Impulses are rapid up to 200 per second. A second 
impulse was recorded from individual zooids, probably generated by the polypide's ner- 
vous system. The retractor muscle shortens at more than 20 times its own length per sec- 
ond and is apparently the most rapidly contracting muscle known. 
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Various authors have investigated the 
control of behavior by simply organized 
nervous systems in colonial invertebrates 
[for example, see (1, 2)]. Except for record- 
ings of the Hydrozoa (2, 3), however, no 
direct electrophysiological recordings of 
colonial nervous activity have been made. 
Marcus (4) claimed that no colonial co- 
ordination existed in the gymnolaemate 
Bryozoa. This view, supported by Silen (5) 
and others, has been widely accepted in 
the last 50 years. Hiller (6) and more re- 
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branipora membranacea and Electra pi- 
losa. Furthermore, electrophysiological 
recordings indicate that a highly active co- 
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